
Simulation and analysis of some simple
biochemical networks

Computer exercise, Tek292, 2013
Contact: Behruz Bozorg (behruz@thep.lu.se, 046-222 9079)

1 Introduction

In this assignment we will start modeling simple reactions and continue by defin-
ing more elaborated molecular networks to investigate more complex dynamics.
Finally we will also add diffusion and investigate spatial organization in such sys-
tems.
Exercises are divided into analytical exercises (A1-A4) (which are optimally solved
before the scheduled computer exercise) and computer exercises (C1-C8), which
will be solved using MATLAB software (Mathworks, Natick, MA). In addition
there are two extra computer exercises (C9-C10), which can be addressed depend-
ing on time. The solutions for the exercises must be reported in a report (see guide-
lines for details).

2 Background

When biological networks have been investigated, it has been found that the same
type of dynamical structures, so called network motifs, can be found in many sys-
tems [1]. Although these network motifs are built with different genes and mo-
lecules in different organisms, the interactions are typically the same and hence
the dynamical behavior is the same. In this assignment, the goal is to investigate
simple systems representing two of the most common dynamical network motifs
found in nature.

2.1 Bistable systems

Cells often need to be able to make decisions. For example it can be to determine
differentiation paths or respond to environmental signaling. These decisions are
often of binary nature, i.e. either on or off. It has been found that cellular decisions
often are regulated by a small number of genes that then leads to large down-
stream changes within the cell. A common motif for a binary decision is to have
two genes repressing each other, hence creating a winner take all situation, where
either one of the genes, but not both are turned on. Depending on some initial con-
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Figure 1: Bistable network determining the differentiation decision between red and white blood
cells. The plot shows tha possibility of bistable behavior, where depending on initial concentra-
tions, the GATA-1 gene can either be on or off.

ditions, that may be determined by an external signal, the system can end up in
two different states. Hence the network has a bistable dynamics with two differ-
ent stable fixed points. An example of such a doubly repressing pair of genes
is found in the differentiation decision in the hematopoietic erythroid-myeloid
switch, where the GATA-1 and PU.1 genes are repressing each other (Fig. 1, [2]). If
GATA-1 is expressed the cell will start a downstream transcription program and
differentiate into a red blood cell and if PU.1 is expressed it will differentiate into
a white blood cell.

2.2 Oscillatory systems

Several biological behaviors are determined from oscillatory systems. Prime ex-
amples are the cell cycle and the circadian clock. A network motif that leads to
oscillations is to have activation steps that is completed with a negative connec-
tion creating a negative feedback loop. An example is a model of the cell cycle
where the protein cyclin activate cdc kinases and where the end product is acti-
vating degradation of the cyclin molecule, completing the negative feedback loop
(Fig. 2, [3]). The dynamics of negative feedback loops will depend on parame-
ter values, where either stable states are possible or oscillations may be the stable
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Figure 2: Model network for a cell cycle. Several activation steps are combined with an induced
degradation. The model creates oscillations that are displayed in the phase diagram.

behavior. One important feature to get oscillations is to have delays in the interac-
tions.

2.3 Small gene regulatory networks

Construction of small regulatory networks directly within cells, has been made
possible in recent years. These systems are typically built within E. coli and a
main benefit is that analysis of biological parameters, as well as dynamics, is more
tractable.
The goal of this exercise is to investigate mathematical models of such systems
where bistable and oscillatory dynamics have been engineered into the networks.
The full network is a three component repressing network, termed the repressila-
tor (Fig. 3, [4]). It is constructed with three genes that are asymmetrically repress-
ing each other, where gene x1 represses gene x2, x2 represses x3, and x3 represses
x1, forming a three node ring. In the process of building the model for this net-
work, we will also analyze the smaller versions of repressor networks, with an one
node auto-repressor (gene x1 represses itself), and a two node repressor network,
where x1 represses x2, and x2 represses x1 (Fig. 4, [5]).

2.4 Spatial pattern formation

A main question in developmental biology is how a group of homogeneous cells
can differentiate into spatially heterogeneous cell types. This relates to early dif-
ferentiation steps forming the base for different tissues as well as for ’global’ pat-
terns such as symmetric initiation of organs and visual patterns (Fig. 5). The
ideas of reaction-diffusion models where introduced by A. Turing in the 1950s
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Figure 3: Network built into the E coli where three genes are repressing each other. The GFP
readout in from the experiment shows oscillations not correlating with the bacteria cell cycle.

Figure 4: Network built into an E coli bacteria. The phase diagram shows how different parameter
values in a model of the system leads to different kinds of dynamics with either a single fixed point
or bistability.
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A) B)

Figure 5: A) Examples of patterns found in nature. B) Simulations of a reaction-diffusion model
with different parameters.

[6]. He showed how intracellular reactions combined with intercellular diffusion
could lead to spontaneous spatial pattern formation in molecular (morphogen)
concentrations. Meinhardt and co-workers has analysed these models in detail
and showed that a local activation together with a long-range inhibition is a com-
mon mechanism in this type of models, and that depending on parameter values
different types of patterns can be found (Fig. 5). In this exercise we will use the
brusselator model, since its equations can be derived from mass action mechanisms.

3 Simulation of a biochemical network with MATLAB

Simulation of a biochemical network with MATLAB software (Mathworks, Natick,
MA) involves numerical solving of dynamical equations.
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3.1 Ordinary differential equations

MATLAB allows to solve initial value problems for ordinary differential equations
by the family of ode solvers. For details see:
http://www.mathworks.se/help/techdoc/ref/ode23.html

In particular, the solver ode45 allows to solve nonstiff differential equations by
Runge-Kutta method. Its syntax is:

[T Y] = ode45(odefun,tspan,y0,optionsODE,struct);

Where:

• odefun is the name of the function where the differential equations are de-
clared.

• tspan is a vector specifying the interval of integration.

• y0 is a vector specifying the initial conditions.

• optionsODE contains the optional parameters that change the default integra-
tion properties.

• struct is a structure containg additional parameters.

• T is a column vector of time points.

• Y is the solution array. Each row in Y corresponds to the solution at a time
returned in the corresponding row of T.

3.2 Example

As an example, let us implement the bistable erythroid-myeloid switch presented
in the beginning [2]. The dynamical equations of GATA-1 ([G]) and PU.1 ([P]) are:

d[G]

dt
=

α1 + α2 · [G]

1 + β1 + β2 · [G] + β3 · [G] · [P] − γ1 · [G] (1)

d[P]
dt

=
δ1 + δ2 · [P]

1 + ε1 + ε2 · [P] + ε3 · [G] · [P] − γ2 · [P] (2)

The parameter values are: α1 = 0.001, α2 = 0.25, β1 = 0.001, β2 = 0.25, β3 = 1,
γ1 = 0.01, δ1 = 5, δ2 = 0.25, ε1 = 5, ε2 = 0.25, ε3 = 1, γ2 = 0.01. These parameters
will be defined in a structure called struct. The maximum value for tspan is set
to 2000. The vector of initial conditions y0 is [0 0]. In the optionsODE we decleare
the absolute error tolerance AbsTol that apply to the individual components of the
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solution vector as 10−8 for both genes, while the relative error tolerance RelTol

that applies to all components of the solution vector Y as 10−8.
First of all, we create a function called bistableSwitch (file bistableSwitch.m)
where the differential equations are decleared:

function dY = bistableSwitch(time,Y,FLAG,struct)

%space allocation for the derivative

dY=zeros(2,1);

%Y(1) is GATA-1

dY(1)=(struct.alpha1+struct.alpha2*Y(1))/...

(1+struct.beta1+struct.beta2*Y(1)+struct.beta3*Y(1)*Y(2))-...

struct.gamma1*Y(1);

%Y(2) is PU.1

dY(2)=(struct.delta1+struct.delta2*Y(2))/...

(1+struct.epsilon1+struct.epsilon2*Y(2)+struct.epsilon3*Y(1)*Y(2))-...

struct.gamma2*Y(2);

This function is called in the main text (file simulationGATA1PU1.m) where the sys-
tem is solved. That is:

%Program to simulate the erythroid-myeloid switch

%parameters in a structure

struct.alpha1=0.001;

struct.alpha2=0.25;

struct.beta1=0.001;

struct.beta2=0.25;

struct.beta3=1;

struct.gamma1=0.01;

struct.delta1=5;

struct.delta2=0.25;

struct.epsilon1=5;

struct.epsilon2=0.25;

struct.epsilon3=1;

struct.gamma2=0.01;

%set maximum tspan

tmax=2000;

%call ode45 to solve the system of differential equations
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%first gene is GATA-1 (initial condition = 0)

%second gene is PU.1 (initial condition = 0)

%set the options for ode45

optionsODE=odeset(’AbsTol’,[1e-8 1e-8],’RelTol’,1e-8);

[T Y]=ode45(’bistableSwitch’,[0 tmax],[0 0],optionsODE,struct);

GATA1=Y(:,1);

PU1=Y(:,2);

%plot the gene profiles versus time

figure(1)

plot(T,GATA1,’-b’,T,PU1,’-r’);

xlabel(’time’);

ylabel(’expression level’);

legend(’GATA-1’,’PU.1’);

3.3 3D plotting

To produce 3D plot with MATLAB the functions mesh(X,Y,Z) or imagesc(X,Y,Z)
can be used. The first draws a wireframe mesh with color determined by Z, so
color is proportional to surface height. The second draws Z as a heat map. Please
note that if X and Y are vectors of length n and m respectively, the size of Z must be
(m,n).

3.4 Literature

The lecture notes may be of help for solving some of the problems. Scientific pa-
pers describing the models used in this exercise can also be found at:
http://www.thep.lu.se/~henrik/tek292/.

4 Models and Exercises

4.1 Michaelis-Menten

Assume a description of an enzyme reaction as

A + E
k1


k2

AE
k+→ B + E
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(A1) Write down the differential equations for all molecules. Derive the
Michaelis-Menten equation of this process and describe which assump-
tions you are using. How does the production of [B] depend on the con-
centrations [A] and [E]?

4.2 Small gene regulation networks

We will use a Hill-type of equation to describe the regulatory repression. In ad-
dition to this there is a simple degradation term, resulting in a general system of
equation(s) for gene(s) xi

dxi

dt
=

ViK
ni
i

Kni
i + xni

i⊕1
− dixi (3)

where the parameter Vi is the transcription rate for unbound DNA, Ki is the Hill
constant, related to the repressor concentration leading to half of the maximal pro-
duction rate. The Hill coefficient, ni, sets the steepness of the function. Finally,
di is the degradation rate. The ⊕ is a normal plus but modulated at the largest i
value to be 1 (i.e. (i, i⊕ 1) equals (1,1) for a single gene system, (1,2) and (2,1) for
a two-gene system, and (1,2), (2,3), and (3,1) for the three-gene case).

4.2.1 One gene auto-repression

First, we will investigate the single gene auto-repressor (xi = x). For simplicity,
we set some of the parameters to some specific values (d = n = 1), leading to a
Michaelis-Menten formalism, similar to what has been discussed in the lectures

dx
dt

=
VK

K + x
− x. (4)

(A2) Describe in words how the production term in Eq. 4 relates to the
derivation of Michaelis-Menten done in (A1). Find possible equilibrium
states for Eq. 4 and analyse the dynamics.

(C1) Implement the one gene auto-repression model with MATLAB con-
sidering parameters from Eq. 4 and simulate the network for different ini-
tial concentrations of x. How does the system behave? How does chang-
ing the paramters V and K alter the dynamics?
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4.2.2 A two gene repressor network, the bistable switch

Now it is time to add a gene and look at the two-gene repressor network we dis-
cussed in the lectures [5]. Again, some of the parameters will be fixed during the
simulations (K = d = 1, for both proteins), resulting in the equations

dx1

dt
=

V1

1 + xn1
2
− x1 (5)

dx2

dt
=

V2

1 + xn2
1
− x2 (6)

(A3) Find the null-clines for both proteins (dxi/dt = 0). Plot these func-
tions and analyze the behavior in different regions and stability of fixed-
points for the two cases n1 = n2 = 1 and n1 = n2 = 2 (you may set V1 and
V2 to values close to 2). Find possible fixed-points for the case n1 = n2 = 1
analytically.

(C3) Implement the bistable switch with MATLAB for the cases inves-
tigated in (A3) considering different initial configurations (x1, x2) (e.g.
(0,0),(0,2),(2,0),(2,2)). Plot the output in the x2 versus x1 plot (including
the null-clines). Describe the dynamics. What happens with a completely
symmetric model and initial configuration? How can this network be
used to make a decision?

4.2.3 A three gene repressor network, the repressilator

We are now ready to add another protein, resulting in a three gene repressor net-
work termed the repressilator. The model was presented in a paper by Elowitz et
al. [4], where they studied the system both in vivo, by introducing a small genetical
network in E.coli, and in silico, by performing simulations simular to what you
will do in the remaining part of this exercise. The original model included both
mRNA and proteins in the dynamics, but here we will simplify matters by only
considering mRNA. This results in the following three equations.
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dx1

dt
=

V1

K1 + xn1
2
− x1 (7)

dx2

dt
=

V2

K2 + xn2
3
− x2 (8)

dx3

dt
=

V3

K3 + xn3
1
− x3 (9)

The function repressilator implements Eqs. 7- 9, while the program simulationRepressilator

allows the simulation of the network.

(C4) Simulate the model for a number of different initial conditions and
analyze the dynamics by plotting xi(t) and phase planes (xi versus xj).

(C5) Try to find an oscillatory behavior by adjusting the parameters. Plot
the results. What is typically needed to get oscillations? Can you tune the
amplitude or period of the oscillations? How does this network relate to
the cell cycle network described in Fig. 2.

4.3 Reaction-diffusion

We will introduce a diffusion-like transport between cells lying on a line, i.e cell
i is neighbor with cell i − 1 and i + 1, where i is the cell index. The transport is
defined in the model by

dci

dt
= D(ci−1 − 2ci + ci+1) (10)

where ci is the concentration in cell i.

4.4 The Brusselator

The Brusselator reaction network consistes of the reactions:
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A
k1→ X

2X + Y
k2→ 3X

B + X
k3→ Y + C

X
k4→ D.

(A4) Write down the differential equations describing the time evolution
of [X] and [Y].

The program simulationBrusselator allows the simulation of the network.

(C6) Run the simulationBrusselator program for one cell (set N to 1)
and different parameter values (set minX and maxX to the same desider-
ated value; similarly set minY and maxY to the same desiderated values).
Investigate the behavior. Can you get the system to oscillate?

(C7) Increase the number of cells (e.g. set N to 100) and use random initial
concentrations for X and Y, and parameters leading to oscillations from
(C6). Describe the difference between different cells. Introduce diffusion
for X (Dx). What happens with different cells?

(C8) Use small random deviations in initial concentrations of X and Y.
Vary the parameters including the two diffusion parameters Dx and Dy

and describe different behaviors. Can you relate the behavior to spatial
differentiation patterns found in biological organisms? How does your
model parameters relate to Meinhardts description of the behavior as a
local activation and a long-range inhibition?

5 Additional exercises

5.1 Repressilator for populations of cells

(C9) Simulate a repressilator model with two cells (modify the program
simulationRepressilator and the function repressilator). Use param-
eters leading to oscillations and somewhat different initial concentrations
in the two cells. Explain what happens.
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(C10) Add diffusion for x1. What happens?

6 Giudelines for the report

The report should be formulated as a scientific paper including: introduction (de-
scription of the problem in general terms providing background information), the-
ory (description of the theory related to the problem including answers to ana-
lytical exercises), implementation (description of the code used to implement a
network—where applicable), results (description of the results obtained from dif-
ferent simulations), discussion and conclusions (explanation of the results, com-
parisons, ”take home” message, · · · ).
The reports must be in English and submitted electronically as a pdf file to the
supervisor e-mail address.
It is allowed to collaborate with colleagues during the exercises, but the report
must be individual. In the report you are allowed to use information from any
source you prefer, but a reference should be given for each cited statement. Any
material that is not original and not corrected referenced will be recognized and
report to the university disciplinary council.
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