Exercise for Colours and Flavours and their consequences Autumn 2019: lecture 3

1 Sum rules

What would happen if you need two subtractions? I.e. use

$$\frac{q^4\Pi(s)}{s^2(s-q^2)}.$$

2 Correlators

Calculate the object

$$\Pi^{V}_{\mu\nu} = i \int d^d x \, e^{-iq \cdot x} \langle 0 | T \left(J_{\mu}(x) J_{\nu}^{\dagger}(0) \right) | 0 \rangle$$

to one-loop in dimensional regularization.

$$J_{\mu}(x) = \overline{q}(x)\gamma_{\mu}q(x)$$

You can also pick different quarks if you like, just do it for one quark. You can do it for the massless case (massive is not that much more difficult).

Notes:

- The solution is in the lecture notes but try to do it yourself first.
- What would happen if I take $J^5_{\mu} = \overline{q}(x)\gamma_{\mu}\gamma_5 q(x)$ instead.
- At which order in α_S does the difference start between the correlator for currents with equal quarks and with different quarks?