The adventures of radioactive ions between production and measurement

Peter Dendooven

KVI Zernikelaan 25 9747 AA Groningen The Netherlands

dendooven@kvi.nl

Contents

- Orientation: what's all this about ?
- Production of exotic nuclei
- Selection: overview building blocks examples
- Manipulation: overview building blocks examples
- Summary

An on-line experiment

Special needs for radioactive ions

selection and manipulation techniques need to be

fast (short half-life)
 down to μs
 "on-line"

 efficient (small cross section) aim for 100 %

Producing exotic nuclei

Selection techniques: 2 types

Selection: building blocks

	high energy beam	thermal energy cloud
separation	 magnetic dipole electric dipole velocity filter energy degrader 	ionizationion trap
identification	 time-of-flight (TOF) total energy energy loss (ΔE) magnetic rigidity 	 stopping range radioactive decay

in-flight stop & go (ISOL)

Separation at high energy

Separation at high energy

velocity filter Wien filter, E-cross-B filter

Energy degrader

 \rightarrow straggling (spread) in energy and angle

Momentum-loss achromatic fragment separator

example: FRS @ GSI

Identification at high energy

measured quantities relationships $A = \frac{2}{K} \frac{E T^2}{I^2}$ time-of-flight (TOF) $T = \frac{L}{V}$ total energy $E = \frac{1}{2}m v^2 = \frac{1}{2}KAv^2$ $\frac{q^2}{A} = 2K \frac{E}{(B\rho)^2}$ magnetic rigidity $B\rho = \frac{m v}{a} = K \frac{A v}{a}$ $\frac{A}{a} = \frac{1}{K} \frac{B\rho T}{L}$ $q = 2 \frac{ET}{LB\rho}$ energy loss $\Delta E \propto \frac{A Z^2}{E}$

A and q are discrete !

Example: LISE 3 at GANIL

Example: LISE 3 at GANIL

Identification plot: discovery of ⁴⁸Ni

B. Blank et al., Phys. Rev. Lett. 84 (2000) 1116

115 pnA 74.5 A MeV ⁵⁸Ni²⁶⁺ + 230 mg/cm^{2 nat}Ni

one ⁴⁸Ni observed for every 10^{17} primary beam particles! transmission efficiency: $10 \% \rightarrow cross \ section = 5 \ 10^{-14} \ b$

Separation at thermal energy: target-ion source systems

the ISOL method Isotope Separator On-Line

target-ion "sourcery"

target-ion source systems can have:

chemical selectivity

based on e.g. melting point, diffusion constant, ionization energy, oxidation state in compounds

• isotopic/isomeric selectivity laser ionization

Laser ionization

- isotopic (=Z, ≠A)
- isomeric (=Z, =A, ≠E*)

Selectivity in laser ionization

ISOLDE-CERN

Manipulation of radioactive ions

manipulation of ion group properties		
• energy	energy degrading stopping, trapping acceleration	
 energy spread 	cooling, trapping	
emittance	cooling	
• size	cooling, trapping	
 time structure 	pulsing bunching	

manipulation of ion properties

- charge state ionization
- ionic/atomic state
- spin direction alignment
 - alignment polarization

"ion beam cooler" (gas-filled RF quadrupole) "charge breeder" (ECRIS & EBIS)

Ion beam cooler: principle

- reducing beam size, emittance, energy spread
- storing
- bunching

the output does not depend on the input !

principle

reducing energy spread: thermalization in (helium) gas

confinement by electric fields

- RF multipole
- end electrodes

Ion beam cooler: RF confinement

Mathieu parameter

$$q = \frac{4 Q V_{RF}}{m r_0^2 \Omega_{RF}^2}$$

Ion motion is stable when 0 < q < 0.91

Ion beam cooler: axial field

axial field due to segmentation of quadrupole rods

- speeds up transmission
- allows storing and bunching

Ion beam cooler: storing and bunching

The Jyväkylä IGISOL facility

- fast (sub ms)
- chemically non-selective
 → access to all elements

including refractory metals

maximum yield ↑↓ high energy spread ↓ on-line cooler-buncher

Charge state breeding: basics

What?

from singly charged to multiply charged ions

" $1^+ \rightarrow n^+$ "

Why?

In principle

electron impact stepwise ionization

requirements

1) high enough electron energy

- 2) suitable combination of:
 - ionization time (\rightarrow confinement)
 - high electron density
 - good vacuum

ECRIS electron cyclotron resonance ion source

In practice

EBIS electron beam ion source

Charge state breeding: ECRIS vs. EBIS

ECRIS

Electron Cyclotron Resonance Ion Source

EBIS

Electron Beam Ion Source

confinement

magnetic bottle / e⁻-ion plasma minimum-B field axial: solenoid, radial: multipole

axial: potentials on drift tubes radial: electron beam space charge

electrostatic / ions

electron energy

microwaves

REX-ISOLDE

Summary

many "building blocks" are available

studying exotic nuclei requires a clever combination of several building blocks

has to be fast and efficient !