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ABSTRACT: We discuss what happens at the end of the QCD cascades. We show that,
with just a few reasonable assumptions, the emission of soft gluons is constrained to
produce an ordered field in the form of a helix. We describe how to modify the Lund
fragmentation scheme in order to fragment such a field. Our modified fragmentation
scheme yields results which are consistent with current experimental measurements,
but predicts at least one signature which should be observable.
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Al. Problems with fragmenting soft gluons

1. Introduction

In QCD the production of two colour charges which subsequently move apart will
lead to the production of further colour radiation. This can be described in terms
of the fundamental field quanta, the gluons, but it is also possible to describe the
ensuing radiation in terms of dipoles. This property arises because in non-abelian
theories the emission of an extra gluon from a gluon-gluon dipole can (to a very good
approximation) be modelled as the destruction of the original dipole and the creation
of two new dipoles. In this way the change in the colour field can be described as an
increasing cascade of dipoles. The end of this cascade occurs when the dipole masses are
so small that helicity conservation prevents further real gluon emission. In this paper
we examine what happens at the end of this cascade. We find that the conditions
are favourable for the field to utilize the azimuthal degree of freedom and wind itself
into the form of a helix. This corresponds to a close—packed configuration of gluons in
rapidity—azimuthal-angle space.

We begin by describing a toy model which contains the relevant features, namely a
tendency to emit as many gluons as possible and the constraint that gluons are not too
“close” to each other (which arises from helicity conservation). In this simple model it
is clear that at the end of the cascade an ordered field emerges with the characteristics



of a helix. To progress beyond this model we use the Lund model of QCD. In the Lund
picture hard gluons are represented as excitations of a relativistic string which connects
a quark, anti-quark pair. However, the gluons from which the helix is built up are too
soft to be modelled in this way. Instead we introduce a helical semi-classical field
and thus develop a modifed version of the Lund fragmentation scheme. Our modified
fragmentation scheme enables us to study whether the consequences of a screwy field
can be detected in the final state particles. We find that if events with hard gluons are
excluded then the screwiness of the field may be observed.

2. The dipole cascades; increase and decrease of phase space

In order to describe what can happen at the end of the QCD cascades we will provide
a brief description of the cascades. We will in particular discuss the consequences of
helicity conservation in the emission of partons.

The well-known formula for dipole emission of bremsstrahlung is

dk?  dé
dn = a—=dy(=——) ¥ 2.1

where @ is the effective coupling, k£, , y, and ¢ are the transverse momentum, rapidity
and azimuthal angle respectively, although the azimuthal angle dependence is usually
neglected. The final factor, ¥, corresponds to the spin couplings. We will briefly con-
sider the precise definitions before we consider the implications. The effective coupling
for QCD in the case of a gluonic dipole is given by

N o, N 6
2r  1llog(k? /A?)

QaqQcp = (2.2)
The occurrence of the number of colours, N,, and the factor 1/2 in the QCD coupling is
due to early conventions, whereas the result that the running is governed by 1/c = 6/11
is a basic gauge group independent result. It only depends upon the fact that in
non-abelian gauge theories there is a three-particle coupling between vector particles,
e.g. the colour-8 gluons in QCD. (The four-gluon coupling also occurs to preserve the
symmetry, but it does not play a role in this connection). We neglect the flavour term
—2ns/3 which should accompany 11 in the denominator because it is a small effect
related to the possibility of gluon splitting; g — qq.

The transverse momentum and the (dipole cms) rapidity are defined in a Lorentz
invariant way in terms of the squared masses of the final state partons (the emitters
are conventionally indexed 1 and 3 and the emitted field quantum 2):

Sij = (kl + k/’j)Z = lekj = leiklj [cosh(Ay)ij — COS(AQb)ij] X
§ = S12 + S23 + 831,

s12 = s(1 —x3), sa3 = s(1—21),
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Here x; and x3 are the final state cms energy fractions of the emitters. Requiring
energy momentum conservation limits the allowed emittance region to
k) cosh(y) < % (2.4)

This region can conveniently be approximated as |y| < (L — k)/2 with the variables
L = log(s/A?) and k = log(k? /A?). This means that the (approximate) phase space
available for dipole emission is the interior of a triangular region in the (y, x)-plane
with the height and the baselength both equal to L. The inclusive density inside the
triangle is, in this Leading-Log Approximation (LLA), given by the effective coupling &
according to eq. (2.T). The rapidity range, L — &, is of course the length of a hyperbola
spanned between the emitters in space-time (or energy-momentum at the scale k% ).

If we consider an initial qq dipole emitting a gluon then the probability for the
produced qgq system to emit a second gluon is a complicated expression [L]. In case
the transverse momenta of the first and second gluon are strongly ordered, k1 > ko,
it is a very good approximation to treat the second emission as independent emission
from two dipoles [2]. For an exclusive statement, for example the probability dP to
emit the first gluon with a certain (k1,y;), it is necessary to multiply the inclusive
formula in eq. (2.1) with a Sudakov form factor A, containing the probability not to
emit above k1,

A (L, k1) = exp(— /L dn),

K1

dP(q,g;,q) = dn(k1,y1)As(L, k1) - (2.5)

The probability to emit two gluons is then, in the approximation that the second gluon
is emitted by two independent dipoles, given by

dP(q, g1g27® = dP(q, ghq) [dP(CL g27g1) + dp(gbgza@] (2‘6)

in easily understood notations. The approximation in eq. (276) results at most in a
percentage error over all phase space [3]. Thus, contrary to QED where the chargeless
photons still leave the ete -current as the single emitter, the 8-charge gluon (g;) in
QCD changes the original qq dipole into two dipole emitters, one between q and g,
and one between g; and G, and each can independently emit the second gluon (g,). The
requirement for the validity of the approximation in eq. (2.6) is that k3 > k5 or else
the indices are exchanged.

The two independent dipoles are moving apart (with g; as the common parton).
This means that they have together a larger effective rapidity range for the emission
of g,, i.e. the original hyperbola length L = log(s) is exchanged for two hyperbolas
with the combined length log(sqg, ) +10g(sg,q) = L+1og(k?,). From any one of the two
new dipoles we may then emit the second gluon, thereby producing three independent
dipole emitters and the process can be continued towards more dipoles; ordering the
process in k; downwards. The available phase space for further emission is increased
after each emission, as can be seen from the increased total length, L, after the first
emission. This description of the QCD cascades is called the Dipole Cascade Model
(DCM) [3).



We will now consider the polarisation sum contribution in eq. (2.1). Its precise
properties depend upon whether we are dealing with a qq, qg or a gg dipole, but it
stems from the spin couplings between the emitter(s) (it is essentially sensitive only to
the closest emitter) and the new field quantum. These couplings contain the property
that helicity is conserved, which is true for all gauge theories. This means that if a spin-
1/2 parton emits a spin-1 parton, the spin-1 parton must go apart from the emitting
particle in order to conserve helicity and angular momentum. They have to go even
further apart in the case of a spin-1 parton emitting a spin-1 parton. To estimate the
separation we consider (for fixed k, (or k)) the available rapidity range:

/ymax\lfdy:L—m—c—i—O(k:i/s), (2.7)
Yrmin
where ¢ = (11/12 + 11/12), (3/4 + 11/12) or (3/4 + 3/4) depending on whether the
emitters are gg, qg (gq) or a qq dipole [3]. The quantities ¢ are written as sums to
show that a spin-1 (g) emitter and a spin-1/2 (q or q) emitter has an empty region
surrounding it in rapidity of size 11/6 and 3/2, respectively. In order to obtain this
result we note that in terms of the xz-variables introduced in eq. (2:3) the factor VU is
(7' + x5*)/2 with z;3 = 1 — k exp(£y)/+/s and ny 3 equal to 2 or 3 for q(q) and
g, respectively. Yfmaxmin} are determined from the energy momentum requirement in
ca. (24).

A note of caution should be issued at this point. For given s and k, there are two
definite limits in rapidity ymin < ¥ < Ymax, and there is then a depletion of emissions
due to helicity conservation, in regions close to ymin and ymax. It is in general a poor
approximation to put the factor ¥ to a unit stepfunction for ymin + ¢/2 < ¥ < Ymax —
¢/2 although it works when the rapidities and azimuth are integrated out. A closer
examination provides a y-distribution with similarities to a finite temperature Fermi
distribution. We will nevertheless refer to this feature as “the excluded region” around
each gluon.

We note that in the process g — qq, where the spin-1 parton emits two spin-
1/2 partons, that the fermion pair “prefer” to be parallel, since there are no poles in
this decay distribution. However the process g — (q is suppressed compared to the
process g — gg and is in general neglected. The DCM will in this way produce a
fan-like set of dipoles, which in the LLA increases the phase space (the total available
effective rapidity range) for further emissions. However, including the influence from the
polarisation sum (which is essentially the approximation scheme called Modified LLA)
there is in each emission also a depleted region around an emitted parton, in practice
¢ = 11/6, because the gluons completely dominate the process. At large energies, but
not too large transverse momenta, one may in general neglect the restrictions but they
will be very noticable at the end of the cascades. For example, with a dipole mass of 3
GeV the typical rapidity range available for gluon emission is about 4 units, and it is
then very noticable to exclude 11/6 units.

It is interesting that the average region excluded due to helicity conservation also
occurs in connection with the properties of the running coupling. To be more precise,
we consider a change of scale in the definition of a field quantum and its interaction.
A change of scale means that the field operator, which has been normalised to a single
quantum at one scale, and the coupling constant, which likewise has been normalised



at the original scale, will both change. These changes can be read out from the Callan-
Symanzik equations and the S-function contribution, stemming from the change in the
coupling constant, can be written as

oM _

~Ala) o =

11 Ny 2npay, OM
S 2, O
6 27 3 4w Oag

(2.8)

where a change in a quantity M, when the observation scale is decreased from the
level kK = log(k?) to k — dk, is considered. The decrease accounts for the minus sign
on the left hand side. According to the DCM there is then at this new scale not only
the possibility to emit new gluons but also, at the next order in the coupling ay, the
possibility to reabsorb already emitted gluons.

The operator a;0/0as works like a number operator, i.e. for any function M =
> am,, it provides the number n of possible insertions. The quantities N.c /27 and
nsos/4m are the couplings for gg — g and qq — g (and the inverse processes) while
11/6 and 2/3 corresponds to the effective (generalised) rapidity ranges available in
these reabsorption processes for a given k. It should be noted, however, that this
interpretation is gauge-dependent; in almost all gauges there are contributions to the
B-function from the vertex corrections. However, for a particular gauge choice with the
propagator given by —(g,, — 4k,k,/k?)/k?, the vertex contributions vanish. A closer
analysis reveals that the major effect stems from the so-called Coulomb gluons, i.e. a
charged particle like a field quantum in a non-abelian theory is always accompanied
and interacts with its own Coulomb field. The 11/6 can therefore be considered as the
region around the gluon containing its accompanying field. This has been utilized for
an approximation of the QCD cascades where the available phase space for emission is

discretised [G].

3. A toy model for the end of the cascades

After several gluon emissions there are a set of dipoles with small masses, and there are
in general very many Feynman graphs which may contribute. The largest diagramatic
contribution is chosen according to coherence conditions in the cascade; in the Dipole
Model [4] by an ordering of the gluon emissions in transverse momentum, and in the
Webber-Marchesini model [7], and the model implemented in JETSET [§], according
to a choice of kinematical variables that fascilitates a strong angular ordering of the
emitted gluons. Results from the cascade models are essentially equivalent, at least as
long as sufficiently hard gluon emission is considered.

The ordering of emissions in the models will lead to dipoles with small masses
emitting softer gluons. These soft gluons have a transverse momentum, k,, of the
same order as their emitter and recoils play an important role. At present there exists
only a minor knowledge of how the recoils should be distributed among the emitters.
A sufficiently large recoil on one of the emitting (soft) gluons will in general imply that
the chosen order is no longer in accordance with the coherence conditions. Emitting
soft gluons will evidently lead to a situation where several, or even very many, paths
to the final state are important, and many different Feynman graphs may contribute
and interfere.



To investigate the emission of soft gluons we propose a toy model with the following
two properties:

I We assume that the effective coupling & is large enough so that there is a tendency
to emit as many gluons as possible, essentially with the same &, .

IT We assume that the emissions fulfil the requirement of helicity conservation; this
implies that two colour-connected gluons cannot be closer than a “distance” d = c.

We will use the following combination as the probability for a given colour-connected
multi-gluon state

P =

n—1
-2, (3.1)
1 Sij+l

where s; ;1 is the dipole mass between the colour-connected gluons j and j + 1. The
factor a corresponds to the product of the coupling and the relevant phase space region,
and [ to the restrictions from helicity conservation, i.e. the requirement of a suitable
distance between the emitted gluons. Neglecting recoils, we obtain for any order of the
emissions in the DCM, that the product of factors 1/s; ;41 can be written in terms of

the invariant dipole transverse momenta as

2 1.2 2
512823 .. - Spn—1n = kLQki3 e kLn—lsll..n s (32)

where k, ; denotes the invariant £, of the dipole from which gluon j is emitted. Equa-
tion (8.1) is therefore a simple generalisation of eq. (2.1).
The dipole mass can be written as

sjj+1 = k12[cosh(Ay) — cos(Ag)]
~ k% (Ay® + A1 + (Ay? — A¢?)/12]. (3.3)

For simplicity we have set the transverse momenta of the two gluons to be identical.
Ay and A¢ are the differences between the colour-connected gluons in rapidity and
azimuthal angle, respectively. We are now in a position to define precisely what we
mean by “distance”. We therefore introduce a distance measure, d, which is related to

the dipole mass by
dj’j+1 =4/ Sj’j+1/kﬁ_ . (34)

When the dipole mass and the rapidity region are large the azimuthal dependence can
be neglected and d ~ Ay.

The emission of soft gluons has thus been reduced to the following problem; given a
certain rapidity range and the full accompanying azimuthal range 0 < ¢ < 27 how are
the colour-connected gluons distributed in phase space in order to obtain a maximum
of P in eq. (B.l), keeping in mind that the gluons cannot be too close?

From eq. (B.I) we see that the magnitude of « controls the relative probability
between different gluon number states. If « is sufficiently large the number of emitted
gluons will fill the available phase space, and P becomes maximal when the gluons
align along a straight line in phase space. This helix-like structure is the optimal
configuration irrespective of the size of «, or of the number of emitted gluons. For a
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Figure 1: The most probable configurations with five and six gluons using ¢ = 11/6. (The
cylindrical phase space has been mapped onto a plane). The gluon exclusion region for each
gluon is indicated with the ellipse-like shapes. The line segments show the colour field and

should form a straight line for a perfect helix. The discrepancy is due to the discrete phase
space used in our numerical analysis.

given multi-gluon state there are many possible ways to colour-connect the state, where
the helix is only one of the possibilities. It is of course possible that the sub-optimal
configurations are the important ones and swamp the helix-like contribution, but there
are also many contributions close to a perfect helix.

We have carried out a numerical study to test whether the contributions from
helix-like structures survive the phase space effects. Our program calculates all possi-
ble configurations on a discretized (y, ¢) phase space taking into account that gluons
must not be closer than ¢ to each other. The number of possible configurations grows
factorially with the number of gluons, but the number of gluons is restricted by the
available phase space. We have studied a reasonable phase space size of three units of
rapidity using a closest gluon-to-gluon distance ¢ = 11/6 in all the calculations. Since
the fluctuations in dipole k, are limited within a narrow range at the end of the cas-
cades and the dependence on dipole &, in eq. (2.1) is rather weak, we set the transverse
momenta of the gluons to be constant.

In fig. & we show the most probable five and six gluon configurations. The points

corresponding to a given mass correspond to ellipse-like shapes (\/ cosh(dy) — cos(d¢) )
and in order to minimize the distance between adjacent gluon emissions these ellipses
must be displaced so that they correspond to a helix-shaped configuration. The case
shown corresponds to the optimal situation where it is favourable to “close pack” the
gluons irrespective of the size of a.

Taking into account all possible configurations we obtain a distribution in D? =
Zdij +1 which is very broad, cf. fig. 2, but weighting each D? with the corresponding
P from eq. (B:I) we obtain a large and narrow peak close to the most probable colour-
connected configuration indicating that the gluon configurations have short strings close
to the optimal helix structure.

Now that we have established that short strings are preferred we investigate in more
detail if they are helix-like in general. To this aim we will introduce a new possible
observable, “screwiness”. At this point it is only a theoretical observable, but later on
we will show how to use it for the final state hadrons. We define screwiness S from the
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Figure 2: The unweighted (dashed line) and weighted (solid line) squared length distribu-
tions, f, of configurations with six gluons.
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Figure 3: Screwiness in the toy model for five (dashed line) and six (solid line) gluon states
in a rapidity region of three units with ¢c=11/6.

values of (y;, ¢;) for the emitted gluons in accordance with the toy model,

2

S(w) =3P (8:5)

Z exp(i(wy; — ¢;))

The first sum is over all the configurations e found in the phase space and the second
goes over the gluons in the configuration. For w-values close to zero, screwiness must
be small if the gluons are emitted isotropically in the azimuthal angle. For large values
of w the phases should be close to chaotic and then screwiness only depends on the
mean number of emitted gluons.

In fig. 3 we show the screwiness distribution including contributions from all config-
urations with a specific number of gluons. Two cases are shown, firstly configurations
with the maximum possible number of gluons (in a three unit rapidity phase space this
is six gluons), and secondly those corresponding to five gluon states (the contributions
corresponding to even smaller number of gluons show similar distributions). There



are two noticable broad peaks with their mean values close to w = +27/c. Since the
helix structure has no preferred rotational direction the distributions should be even.
The small apparent asymmetry is due to numerical effects. We have also analysed the
configurations for ¢ = 1.5 and 3 and these results are independent of the minimum
gluon-to-gluon distance.

From this toy model we see that if we fill the phase space with soft gluons, which
are forbidden to be too close to one another, then they tend to line up along a he-
lix structure, since the colour-connection between the gluons prefer to be as short as
possible.

4. Modelling the helix as an excited string

In order to consider the consequences of the helix-like colour field which we obtained
in section B it is necessary to provide observables in terms of the final state hadrons.
A first attempt to model such a field is to approximate it by the emission of a set
of colour-connected gluons with the same transverse momentum k;. We may then
consider the properties of the final state hadrons, as produced by the Lund string
fragmentation model. We very quickly find that in the competition between increasing
the multiplicity versus increasing the transverse momentum of the hadrons the model
uses the first possibility only. In this section we will be content with giving the basic
argument for why the helix cannot be described as gluonic excitations on the string
field.

Suppose that a gluon with transverse momentum k, is moving transversely to the
constant (k) force field, then it is possible for the gluon to drag out the string field the
distance ¢ = k, /2k (a gluon experiences twice the force acting on a quark). On the
other hand, in a quantum mechanical setting such a gluon is only isolated from the
field if the wave-length of the gluon A ~ 27 /k, is smaller than ¢ and therefore

k? > 4mk,

2., =

min

N

(4.1)

(this is similar to the Landau-Pomeranchuk formation time arguments). From the first
line in eq. (4.1) we obtain the requirement that a “real” gluon must have a transverse
momentum larger than k) = 1.6 GeV.

We conclude that the helix field cannot be described in terms of a finite number of
gluon excitations on the Lund string. The many small-%£; excitations in the model tend
to increase the final state particle multiplicity (with small fluctuations) rather than to
produce transverse momentum for the particles. The interested reader can find a more
thorough investigation of the problems associated with the fragmentation of soft gluons
in appendix A.

5. A semi-classical field at the end of the cascades

We will now consider the possibility that a (semi-)classical colour field is produced at
the end of the perturbative QCD cascades that cannot be described solely in terms



of gluonic excitations on the Lund Model string field. The properties of this field
should be in accordance with the toy model that was described in section 8. Thus
the internal colour quantum number should be correlated to the external space-time
(energy-momentum space) behaviour so that the colour field has a helix structure, i.e.
the colour field lines are turning around a spacelike direction, from now on called the
1-axis.

We may describe the expected field in terms of a wave-
packet of energy-momentum space four-vectors, kg, corre-
sponding to the colour current (the index 6 stands for the
parameters describing the wave-packet). We will assume that
the vectors ky always have a constant virtuality k3 = —m?.
We further assume that the helix colour field is itself emitted
from the current as a continuous stream of gluons dk, colour-
connected along each emission vector, ky. They should be
obtained by differentiating the vector ky (we are generalis-
ing the physics picture from a ladder-diagram as in fig. 4,
where the “propagator” vectors {k}; are emitting the gluons

dk] = k] - kj-l

dk; = kj — k;j ). - A -
The most general description of such a vector is (we use -+ 84 4 ; cuf'rent];gw
lightcone coordinates along the 0l-direction and transverse cons2tant virtuality, vj =

—m?, emitting massless

coordinates in the 23-plane and we do not worry about the field quanta, dk‘]? _o.

initial values):

ko = m[cos(0)(exp(y), — exp(—y), 0,0) + sin(6)(0, 0, cos(c¢), sin(c¢))]
= m[cos(f)e1(y) + sin(0)€1(c9)]. (5.1)

Here m is a constant parameter, y is the rapidity and ¢ the azimuthal angle. We
have introduced o as a constant describing the relative motion in rapidity and azimuth.
We will put ¢ = 1/2 later in order to get ¢ as the azimuthal angle of dk. Finally 6 is
the variable describing, on the one hand, the size of the fluctuations in the longitudinal
and transverse parts, and on the other hand, the properties of the wave-packet.

Assuming that the emitted field quanta dk are massless, we get,

o\’ 1 — cos(26) dy\”
2 _ - - @~ 7 — <
=0 (G) + (T - (4)
A dy\’
small 6 = l<%> +6°| = <%> . (5.2)

We have used the differential d¢ = /dy? + d(c¢)?. Therefore, the assumptions of
constant virtuality of £ and the masslessness of dk imply that the variable 6 should
fulfil the pendulum equation according to the first line of eq. (5.2). In the limit of small
|f|-values this becomes a harmonic oscillator equation, assuming that the quantity
dy/dl is a (small) constant along each vector ky. For consistency we will then make the
change d¢ — od¢. This is the second line of eq. (5.2) and using the notation dy/d¢ = T
we obtain as a classical description (again neglecting the boundary values):

0= gcos(agb) . (5.3)
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If we choose o = 1/2 to make ¢ the azimuthal angle of dk, then we find that the field
emission vectors dk/d¢ and the corresponding current vector ky are (in the approxima-
tion of small oscillations):

% — mrleo(y) + €10()],
by = mles(y) + 7(E12(9) + £11(0))] . (5.4)

Here we have introduced the vectors e = de;/dy and €,y = dé|1/d¢ (note that all
the occurring vectors are orthogonal). We may evidently use the quantity 7 (together
with suitable boundary values) to label the wave packet for the current. That is to
say, we may assume that there is a distribution A(7) which describes the occurrence of
the different current lines, each with a well-defined direction 7. This distribution, h(7),
should be similar to a Gaussian. A single current line with fixed 7 may also be described
in the transverse plane. The current turns around the 1-axis with the azimuthal angle
and the corresponding field quanta are emitted transversely to the current at every
emission point according to eq. (5:4). There is one reasonable restriction: the field
energy emitted by the current in a small angular segment should not exceed the energy
which should be available in the Lund Model string. If we use the string radius as

calculated in eq. (4.%), ¢, = 1/7/k, then we find that
m7t < klpin =~ 0.8 GeV. (5.5)

It is interesting to note that these fields have similarities to those studied in connection
with dimensional reduction in [g].

6. Fragmentation and screwiness

We have in the previous section described the emission of a continuous stream of colour-
connected gluons having the property that the azimuthal angle of the stream is propor-
tional to the rapidity, i.e. it is of a helical character. As previously discussed we cannot
implement this as individual gluonic excitations of the Lund string. We will in this
section instead describe a possible way to take the transverse properties of the contin-
uous helix into account whilst keeping the major properties of the Lund fragmentation
model. In order to do this we will begin by presenting a few relevant parts of the Lund
model. This model has been described several times and a recent investigation can be

found in [10].

6.1. The Lund fragmentation process

The following (non-normalised) probability to produce a set of hadrons has been derived
using semi-classical arguments in [17]]

dP({p};; Pot) = f[ N;dp;6(p5 — m3)0(>_ pj — Piot) exp(—bA). (6.1)
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Figure 5: The break-up of a Lund string.

Here N; are normalisation constants, A the decay area, cf. fig. 5, and b a basic colour-
dynamical parameter; from comparison to experimental data we know that b ~ 0.6
GeV~2 if the area A is expressed in energy-momentum space quantities.

The constant force field spanned between a colour-3 quark and a colour-3 anti-quark
is a simple mode of the massless relativistic string. The process has been generalised
into a situation with multigluon emission in [12] using the Lund interpretation that the
gluons are internal excitations on the string field.

The area decay law in eq. (6.1) can be implemented as an iterative process, in which
the particles are produced in a stepwise way ordered along the positive (or negative)
light-cone. If a set of hadrons is generated, each one takes a fraction z of the remaining
light-cone component E + p; (or E — py, if they are generated along the negative light-
cone), with z given by the distribution

@ exp(—bm? /z). (6.2)

f(z) =N

The parameters N, a and b are related by normalisation, leaving two free parame-
ters. The transverse mass parameter in the fragmentation function is m? = m? + p?,
with the transverse momentum obtained as the sum of the transverse momenta stem-
ming from the q and @ particles generated at the neighbouring vertices, p; = =Fkio—ki1.
In the Lund model a q@-pair with transverse momenta +k, is produced through a
quantum mechanical tunneling process. It results in a Gaussian distribution for the
transverse momenta

d’ky exp(—7k? /). (6.3)

The whole process is implemented in the Monte Carlo program JETSET [§].
Consider the production of a particle with transverse mass m,. Given that one
vertex has the rapidity y, the rapidity difference Ay is not enough to specify the po-
sition of the other vertex. One must also know the proper-time of the first vertex.
This is shown in energy-momentum space in fig. 6 where the first vertex is specified
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by I' which is the squared product of the
proper-time and k. Of course there are two
solutions in this case, but one is strongly
favoured by the area dependence in eq. (6.1).
In the Lund model the vertices, on average,
lie on a hyperbola given by a typical I'. That
is to say, the steps in rapidity in the parti-
cle production are related to the scale (I') as
given by the model. There is a similar sit-
uation in the transverse momentum genera-
tion. The squared transverse momentum of
a particle is not only given by the azimuthal
angle A¢ between the break-up points that
generate the particle. The lengths of the
transverse momenta of the q and the g that tween the constituent vertices has to be re-
make up the particle are also needed. In the 13¢6q to the T of one of the vertices in order
tunneling process in eq. (8.3) these sizes are  for the vertices to be specified.
given by the scale /.

Thus the Lund fragmentation model provides two different energy scales; one longi-
tudinal to relate to the rapidity difference between vertices and one transverse to relate
to their difference in azimuthal angle.

Figure 6: The longitudinal energy scale
in the Lund model is (I'). The figure shows
the production of a particle with transverse
mass m,. The difference in rapidity be-

6.2. A modified fragmentation process with screwiness

The main idea in the screwiness model is that the transverse momentum of the emitted
particles stems from the piece of screwy gluon field that is in between the two break-
up points producing the particle. Therefore we begin by summing up the transverse
momentum that is emitted between two points along the field line, cf. eq. (5-4):
2 - -
. %dgﬁ = kJ_Q - kJ_l = mT[é‘ll((ﬁg) — 5J_1(¢1)]. (64)
We note that the quantity mr also occurs here. We will always consider the parame-
ter m to be a suitable fixed mass parameter but according to the assumed wave function
for the current the direction 7 may vary between the different break-up points. To keep
the presentation clear we will start off keeping 7 fixed. In the end we will present the
generalisation to the case of a varying 7.
If we associate +k 1; with the transverse momenta of the qg-pair produced at ver-
tex i, the transverse momenta of the produced particles are given by eq. (6.4). The
corresponding squared transverse momentum is then

P, = 2m?*7%[1 — cos(Ag)], (6.5)

where A¢ = ¢; — ¢;_1. Since A¢ is proportional to the rapidity difference between
vertices Ay, it can be written as a function of the particle’s light-cone fraction z

Ay 1 z+m? /T
Agb_Ti 2710g< 2(1—2) ) ’ (6.6)
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where I is defined as in fig. 6 and with respect to the previous break-up point 7 — 1.
Taken together this means that we can write the transverse momentum of a particle as

a function of z and 7
A
P2 (2) = 2m?7? [1 — o8 (Mﬂ : (6.7)

T;

As explicitly manifested in eq. (6.7) this means that the transverse and longitudinal
components are connected in this model. Inserting p? (z) in the Lund fragmentation
function gives

F(z) = N@ exp (‘Z (mi + pi(z))> . (6.8)

In this way eq. (6.8) gives the distribution of light-cone fractions for a given direction
T.

This model keeps the longitudinal properties of the ordinary Lund fragmentation
model, but the azimuthal properties are changed. Rapidity differences are still related
to (I') but steps in the azimuthal angle are now correlated with steps in rapidity. The
azimuthal angles are no longer related to k/7 as given by the tunneling process, but
instead to m?7? as given by the screwy gluon field.

When going from one vertex to the next in the
case of varying 7 one has to keep in mind that the
transverse momentum produced at the first vertex
has been specified by the previous step. In order
to conserve the transverse momenta generated at
each vertex we therefore modify the association in (pl
eq. (6.4), as follows:

——dp=ki; — ——kii1, 6.9
/2'—1 d¢ ¢ + Ti—1 Liml ( )
where 7; denotes the direction between break-up
points ¢ — 1 and 4, cf. fig. %. The transverse mo- ,
menta of the produced particles are then given by Q,

ﬁu = Eu - /;uq =m [7'1'611(@) - Tiflé)J_l(Qbifl)] )

Figure 7: A qQ@-pair is produced
Plo=m? [ 472, —mncos(Ag)]. (6.10) 4

in a break-up point with azimuthal
angle ¢. The figure illustrates how
the screwy gluon field between ¢
and ¢ is associated with the trans-
verse momentum (—k 1,k 2) of the

The p? given by eq. (6.10) can then be put into
the fragmentation function. Varying 7 results in
larger variations in the emitted transverse momenta
of the particles. We have used a Gaussian distribu- quarks produced at the two break-
tion of _t-fiirections and we have approximated m? up points. This association has the
in eq. (6.6) with m% ~ mj +(p,.:,,) = mj, +2m?o?. property that the produced trans-
Where my, is the hadron mass and o, denotes the verse momentum is conserved lo-
width in the distribution of 7-directions. The equa- cally in each break-up point.

tions can be solved iteratively without this approx-

imation, but we find that our results are unaffected by this approximation.
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7. Is screwiness observable?

In this section we will address the question of whether introducing a correlation between
y and ¢ of the string break-up vertices has observable consequences for the produced
particles. There are two processes which in principle can destroy such a correlation.
Firstly, there is the initial particle production and secondly, there are resonance decays.
The initial particle production spoils things because even if the vertices lie on a perfect
helix the produced particle will usually not lie on the line between its two constituent
vertices in the (y, ¢)-plane. The particle production fluctuations are mainly in rapidity,
i.e. a particle is produced with an azimuthal angle which roughly corresponds to the
average angle of its constituent vertices, while its rapidity is distributed with width
unity around the average of the vertices.

To study the consequences of the screwiness model we have generated events with
three different values () = 0.3,0.5 and 0.7. For each value we have tuned the param-
eters of the model to agree with the multiplicity, rapidity and transverse momentum
distributions of default JETSET. In this way we can study the correlations introduced
by the model as compared to the ordinary Lund string model. We have tuned m to
get the default average p, of the produced particles, utilizing the fact that the product
mT is the important factor. The parameter b has been changed from the default JET-
SET value to tune the multiplicity, and o, has been tuned to get the final charged p,
fluctuations. Tuning with different (7) values results in the parameter values shown in
table 1.

We note in particular that to get the multiplicity ) 03 05 0.7
distributions of default JETSET only minor changes m 10 071 0.61
of the b—parametel_" are needed. We also note that the b 064 | 068 0.7
restriction in eq. (b.D) is satisfied for all the cases since o 0.2 03 0.35
in this model only a fraction of the energy available =
in the Lund string is used to produce transverse mo- Table 1: Parameter values. The
menta.. model has been tuned to the

We have generated pure q events and the particles multiplicity and charged final p
in the central rapidity plateau have been included in distributions of default JETSET
the analysis. The plots shown are for four units of (b= 0.58).
rapidity, but the qualitative results for observable screwiness are unaffected for values
as low as approximately three units of central rapidity. We have analysed the properties
of the generated events by means of the screwiness measure, defined in eq. (8-5). Here,
the second sum in the measure instead goes over the hadrons or over the break-up
vertices. The weight P, is of course unity for all events.

In fig. 8 the screwiness for the break-up vertices is shown. It has a clear peak for
the different values of (7), and the w-values for the peaks correspond to the average
7 values used. The screwiness for the initially produced particles is shown in fig. B
We note that the peak vanishes for small values of 7. A helix where the windings
are separated by two units of rapidity corresponds to 7 = 1/m. The vanishing of the
signal for small 7 values is therefore in agreement with our findings for the rapidity
fluctuations in the particle production.

For comparison we have included the screwiness for the initial particles produced by
default JETSET in fig. J. As expected no signal is found in this case. The screwiness
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Figure 8: Screwiness for the string break-up vertices. The three curves shown are for
(1) = 0.3, 0.5 and 0.7, respectively. There is a clear peak at w ~ 1/(7) in all the cases.

0.05

0 2 4 6 8 w

Figure 9: Screwiness for the directly produced particles. The three solid curves are for
(1) = 0.3, 0.5 and 0.7, respectively. The peak decreases as (7) is reduced. For (7) = 0.3 the
peak has vanished due to the fluctuations in particle production. The screwiness for default
JETSET (dashed line) has been included for comparison.

is further diluted by resonance decays, but it is still visible for not too small 7 values
as shown in fig. 10.

To try to enhance the signal we have investigated how the screwiness measure
depends on multiplicity and the transverse momentum of the particles. Selecting events
with large initial multiplicity enhances the signal. However, analysing events with
different final multiplicities separately does not give an enhancement of the signal. The
influence of resonance decays on the multiplicity is too large.

Selecting events where (p?) is large enhances the signal when decays are not in-
cluded. This is shown for (7) = 0.3 in the left part of fig. 11} where events with
(p?) > 0.3 GeV? for the initial particles have been selected. As shown in the figure this
event selection results in the signal surviving particle production even for small (7)-
values. This event selection is also profitable when it comes to decreasing the effects of
resonance decays since events with many decay products are not likely to be selected.
In the right part of fig. 11} we show the screwiness for the final state particles in events
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Figure 10: Screwiness for the final particles (7%’s are set stable). The three curves shown

are for (1) = 0.3, 0.5 and 0.7, respectively. For not too small (7)-values there is a peak at

w = 1/(r).
S(w) S(w)
0.100 | 0.100
0.075 | 0.075
0.050 | i 0.050 17
0.025 : ! ! : 0.025 7 : w : ‘
0 2 4 6 8 © 0 2 4 6 8 @

Figure 11: Screwiness for () = 0.3. To enhance the signal events where (p%) is large
have been selected (solid lines). We have included the corresponding curve with no event
selection (dashed lines) to indicate the improvement. Left) Initially produced particles.
(p?) > 0.3 GeVZ2. Right) The final particles. 7%’s are set stable. (p%) > 0.25 GeV?.

where (p?) > 0.25 GeV?. The curves shown are for (1) = 0.3 to show that with event
selection a signal can be obtained even for this case. Using the same event selection of
course enhances the signal for larger (7)-values, but in those cases it was clearly visible
in the total sample.

A total of 50000 qq events have been used in the analysis, except in the event
selection analysis in fig. 1T where 250000 events are analysed. To be able to observe
screwiness for such a small (7)-value one needs to increase the number of events by a
factor of about five compared to the larger values. Since we have only used positive
(T)-values, events with a preferred rotational direction are generated. We could have
included both rotational directions in the event generation which would add a signal
for negative w, but reduce the statistics by a factor of two.

The effects on the screwiness from hard gluons stemming from the parton cascade
will be investigated in future work. However, since only a fairly small number of events
are needed for the results in this paper we expect that investigations of experimental
data, in which hard gluon activity is excluded, can be profitable.
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Figure 12: Left) The p; (GeV) distributions for the directly produced 7’s (solid) and p’s
(dashed). The curves shown are for 7 = 0.5. Right) The p; (GeV) distributions for the all
final pions (solid), 7%’s are set stable, as compared with default JETSET (dashed).

A specific property of our model is that (p?) for directly produced pions is smaller
than (p?) for heavier particles. This feature appears to be in agreement with exper-
imental data on two-particle correlations [13]. A model for correlations in p; in the
string hadronization process with similar consequences was introduced in [iI4]. The p,
for directly produced pions and p’s are shown for the screwiness model in fig. 12 and
the distributions are clearly different. In the figure we also show the p, distribution
of the final pions and compare it to the default JETSET distribution. As seen the
secondary pions wash out the differences. The (p,) for various flavours at the initial
production level depend on the screwiness parameters, but the qualitative difference
remains.

8. Conclusions

It is perhaps surprising that such an ordered structure as a helix could emerge at the
end of the QCD cascade. However, when we consider the constraint imposed by helicity
conservation, we see that purely random configurations of gluons are disfavoured. This
is because the exclusion region around each gluon restricts the maximum number of
allowed gluons. Instead we see that the gluons can achieve the maximum concentration
by close packing themselves into the form of a helix. The fragmentation of this screwy
field has consequences for the final state particles. Although the fragmentation cannot
be described in terms of gluon excitations of the Lund string, we have instead modified
the Lund fragmentation scheme. If the winding is within reasonable limits then we
expect “screwiness” to be an observable feature of the QCD cascade.
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A. Problems with fragmenting soft gluons

In section 4 we claimed that the helix colour-field cannot be implemented as an excited
string, since gluons softer than ko = 1.6 GeV cannot be considered as excitations of
the string.

To illustrate the problems with fragmentation of soft gluons we have investigated
JETSET fragmentation of parton configurations with soft gluons emitted according to
the Dipole Cascade Model as implemented in the ARIADNE Monte Carlo [15]. The
allowed k, range for emissions from the colour dipoles is normally between an upper
value, given by phase-space limits, and a lower infra-red cut-off, k,.. We have instead
used a small maximum allowed k; value (denoted kj.x) to restrict the hardness of
the emitted gluons. This soft cascade has been applied to qg-dipoles oriented along
the z-axis. The soft gluons have a negligible impact on the event topology and for
our purposes it therefore makes sense to define rapidity with respect to the z-axis. We
have analysed the resulting hadrons in the central rapidity plateau of the events. To
emphasize the features of fragmentation of soft gluons we have not included resonance
decays in our analysis.

In fig. 13 we show how the average and the squared width of the central multiplicity
distribution depend on k| .. The effect of the soft gluons is an increase of the average
multiplicity while the multiplicity fluctuations remain constant or even decrease until
k| max is above k1. The (p,) with respect to the z-axis of the hadrons only increases
from 0.46 GeV for a flat string with no gluon excitations to 0.56 GeV for k| .x = 3
GeV. Changing the generated (p,) by such a small factor has a minor effect (~ 5%)
on the average multiplicity in pure qq events whilst adding the soft gluons increases
the average multiplicity by roughly 40%, as shown in the figure. As mentioned in
section 4, we find that the soft gluons essentially only increase the hadron multiplicity.
The number of gluons per rapidity unit varies from 0.25 for k, . = 1 GeV to 0.7 for
kimerz = 5 GeV. The situation is even worse in the case of the helix field where the

1.8 =
1.6 .
1.4 n .
| T I
= I
12 £ . I
i 2
1.0 [ T IIIII UL
L Trrr="7 n
0‘8 Il Il Il Il Il Il
0 1 2 3 4 k
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Figure 13: The multiplicity in central rapidity per unit of rapidty n and the corresponding
variance o2 depends on the upper cut-off in the cascade kjynax (GeV) as shown. Default
JETSET has been used for fragmentation and 0,% /n does not start to increase until k| ax is
roughly 1.6 GeV.
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expected number of soft gluons per unit of rapidity is significantly larger. We conclude
that gluons softer than ko cannot be implemented inside the Lund Model as individual
gluonic excitations of the string.

We will end this appendix with an interpretation of the Lund fragmentation model,
which provides us with the possibility to relate ko to the b-parameter in the model.
The result in eq. (6.1) (although derived semi-classically) can be interpreted quantum-
mechanically by a comparison to Fermi’s Golden Rule. It equals the final state phase
space times the square of a transition matrix element |M|? = exp(—bA). There are two
such quantum-mechanical processes, Schwinger tunneling and the Wilson loop integrals,
which can be used in this connection (and they result in very similar interpretations of
the parameters). For the Schwinger tunneling case we note that if a constant (k) force
field is spanned across the longitudinal region X during the time 7" with a transverse
size A, then the persistence probability of the vacuum (i.e. the probability that the
vacuum should not decay by the production of new quanta) is [16]

IM|? = exp(—r*XTATI) . (A1)

Here the number II only depends upon the properties of the quanta coupled to the
field; for two massless spin 1/2 flavours it is II = 1/127. Comparing the result in
eq. (A.1) to eq. (6.I) we find that the parameter b = A, /247 (taking into account
that the Lund model area is counted in lightcone units). From eq. (4.1) we obtain the
minimum transverse size of the field from which it then follows that the b-parameter in
the Lund model must be b > m/24x ~ 0.6 GeV 2. This is evidently just in accordance
with the phenomenological findings in the Lund model for the parameter b. Further,
considering the distribution in eq. (6.3) for the transverse momentum of a produced
qq-pair breaking the string we recognise the quantity ¢2 in the exponential fall-off.
We may conclude that there is a wave-function for the Lund string in transverse space
with just the right transverse size to allow the “ordinary” transverse fluctuations in
momenta.
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