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Abstract 
An automated peak picking strategy is presented where several peak sets with different signal-to-

noise levels are combined to form a more reliable statement on the protein identity. The strategy is 
compared against both manual peak picking and industry standard automated peak picking on a set 
of mass spectra obtained after tryptic in gel digestion of 2D-gel samples from human fetal fibroblasts. 
The set of spectra contain samples ranging from strong to weak spectra, and the proposed multiple-
scale method is shown to be much better on weak spectra than the industry standard method and a 
human operator, and equal in performance to these on strong and medium strong spectra. It is also 
demonstrated that peak sets selected by a human operator display a considerable variability and that 
it is impossible to speak of a single "true" peak set for a given spectrum. The described multiple-
scale strategy both avoids time-consuming parameter tuning and exceeds the human operator in 
protein identification efficiency. The strategy therefore promises reliable automated user-
independent protein identification using peptide mass fingerprints. 
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1 Introduction 
Mass spectrometry combined with database searching is today the preferred method for protein 

identification. The standard experiment is to separate the proteins, e.g. by 2D gel electrophoresis, 
digest the proteins with a highly specific enzyme, measure the masses of the peptide fragments with a 
mass spectrometer (typically a MALDI-TOF mass spectrometer) and then compare the peptide 
monoisotopic masses with expected monoisotopic masses from a database (protein or DNA database). 
This approach is known as peptide mass fingerprinting (PMF) [1-4]. Several algorithms exist for 
comparing the observed monoisotopic masses with expected peptide masses from a database [5-10] 
but most common today seem to be MASCOT [6], ProFound [7] and MSFit [8]. 

The success of a PMF experiment depends on several factors: The noise level in the spectrum, the 
mass accuracy, the amount and purity of the sample, the number of proteins in the sample, possible 
post-translational modifications, algorithm accuracy, and (to a considerable extent) operator skill and 
experience. A human operator is generally better than software algorithms at judging what is an 
interesting low intensity monoisotopic peak, as opposed to a noise peak, and what is a reasonable 
identity given mass deviations and sequence coverage. Automated mono-isotopic peak detection 
algorithms, e.g. [11-14], work excellently on strong spectra but their performance is often insufficient 
on weak spectra. This is unsatisfying since strong spectra are often produced by high abundant 
proteins, which typically represent the bulk of the cell activity. Low abundance proteins, on the other 
hand, produce weak spectra and often represent the interesting unknown processes. The typical 
situation in a laboratory today is to have human operators double-check the software results and the 
protein identities [15]. These operators also spend considerable time varying the parameters for the 
peak detection software, searching for “optimal” settings of parameters that yield the best 
identification results. An often overlooked but fundamental problem in this process is that a human 
operator is a subjective expert who makes judgments; there will always be borderline cases where the 
judgment can go either way.  Two different operators will not pick identical peak sets, unless they are 
asked to pick only very few and strong peaks, and one operator can be more successful than another 
at identifying proteins from the same spectra. Also, a human operator's opinion on which peaks to 
pick may change with time, as demonstrated in this paper.  

This paper describes a different approach. We abandon the idea of an optimal set of parameters for 
a peak picking algorithm and accept that monoisotopic peak picking is by nature a statistical process. 
It then follows that protein identification should be based on several peak sets, which represent 
different parameter settings for the peak picking algorithm, rather than a single peak set. We 
therefore combine information extracted at different signal-to-noise ratio levels in the spectrum into a 
composite judgment about the protein identity.  In this way we achieve both high sensitivity on weak 
spectra, even better than the human operator, and avoid the dependence on the human operator. The 
proposed method is compared with manual peak picking, software-supported manual peak picking 
(the industrial standard) and two fully automated peak detection strategies that do not combine peak 
sets.  

We have mostly used the Pepex peak picking software in our experiments because it was by 
design very simple to script and automate for the multiple peak sets in this study1. The results do not, 
however, depend on the specific peak picking software used and similar effects would probably have 
been observed with any other high quality peak picking software.  

                                                 
1 Fully functional trial versions of the Pepex software are available from Halmstad University 

http://www.hh.se/staff/bioinf 



We demonstrate our method on spectra that were acquired during an investigation of an airway 
wall remodeling process using human fibroblasts that had been treated with inflammatory cytokines. 
These samples had been metabolically labeled with S-35 to allow detection of newly synthesized 
proteins that were believed to also be low abundance proteins. 

The data generation and analysis presented in this paper is outlined in Figure 1. 
 

 
Figure 1 Overview of the experiments described in the paper. A typical peptide mass fingerprinting project was studied 
and our proposed multiple peak set method was compared to both automated and manual strategies for selecting the 
mono-isotopic peak lists. The final protein identification results were then analyzed for strong, medium, and weak spectra 
to see the benefits of each peak detection strategy for these different spectrum classes. 

2 Experimental details 

2.1 Sample preparation and instrumentation 
Human fibroblasts were derived from the lung cell line HFL-1, obtained from American Tissue 

Culture Collection (ATCC). The samples were plated at 2.5×105 cells per well in 6-well plates and 
grown to confluence for one week. S-35 metabolic labeling was performed using 100 µCi S35-
methionine per well in the presence of 10ng/mL of TGF-β, or vehicle, and incubated for 20 h. The 
cells were then lysed in 500 µL of 8M urea and 2% CHAPS. The amount of radioactivity in each gel 
spot was extremely low and did not impose any hazards or safety regulations related to the MS 
analysis. The small amount of S-35 in the labeled proteins could not be detected by MS and the mass 
shift of methionine containing peptides was insignificant. 

Protein separation was done using 2D-gel electrophoresis with non-linear Immobiline strips with a 
pI window of 3-10. The strip was, after isoelectric focusing, treated with dithiothreitol and then with 
iodoacetamide to reduce and alkylate the proteins before running the second electrophoresis step. Gel 
pieces (2-3 mm in diameter) were cut out, washed with 25 mM ammonium bicarbonate and 
acetonitrile, and treated with porcine trypsin at 37 C overnight. Everything was completed according 
to standard protocols in the literature [16,17]. 

Mass spectra were acquired on a Voyager DE-Pro MALDI-TOF instrument (Applied Biosystems) 
operated in reflector mode using α-cyano-4-hydroxycinnamic acid matrix. Spectra were internally 
calibrated using the trypsin autodigest peaks at m/z 842.51 and m/z 2211.10 as reference masses. 

2.2 Spectrum grouping 
A set of 38 spectra was carefully selected to represent different protein sample amounts. The 

spectra were divided into three groups, designated “strong”, “medium”, and “weak”, based on the 
intensity of the “unknown peptide peaks” relative to the trypsin autodigestion peak at m/z 2211. 
Spectra where more than 20% of the peaks (remaining after background peaks had been removed) 
had a higher intensity than the peak at m/z 2211 were classified as "strong" (9 spectra); “Medium” 
spectra were those where fewer than 20%, but more than 10%, of the peaks had a higher intensity 



than the m/z 2211 peak (11 spectra); “Weak” spectra were those where fewer than 10% of the peaks 
had a higher intensity than the m/z 2211 peak (18 spectra). 

 

3 Algorithmic details 

3.1 User-dependent peak picking with single peak lists 
Four user-dependent peak picking strategies were tried, two manual and two “automatic” (but 

manually tuned):  
(a) The first was an unbiased manual peak picking that was done without the aid of any peak-

detection software, since peak-detection software will bias the decisions of a human operator. 
The spectra were plotted with a graphical display tool and two operators scanned through the 
spectra and marked the peaks that corresponded to monoisotopic peaks. The two operators 
spent between 20-45 minutes on each spectrum, listing the peaks that they visually deemed to 
be mono-isotopic peptide peaks. 

(b) The second was a biased manual peak picking done with the help of the Voyager 5 Data 
Explorer software. A third human operator tried different software parameter settings for each 
spectrum and selected an optimal set of parameters for each spectrum. This peak picking was 
considered typical for a pharmaceutical lab. The operator selected the peak lists by varying the 
absolute intensity parameters for each spectrum and adjusting the parameters to allow detection 
of small but significant peaks while excluding noise and background peaks. Additional mass 
ranges were inserted with different parameter settings when needed. 

(c) The third method was an industry standard “automated” peak picking where a human operator 
selected a single compromise set of parameters for the Voyager 5 Data Explorer software for 
all 38 spectra (the same human operator as in the biased manual peak picking described above). 
The operator tried several parameter settings with the Data Explorer software and the best 
overall results were achieved using an absolute intensity peak threshold. The subjectively best 
(compared to the biased manual peak picking) compromise performance was achieved using 
the following settings for all spectra: Use advance settings, set range 1 = m/z 750 – 1100 and 
minimum intensity = 500, set range 2 = m/z 1100 – 3500 and minimum intensity = 200. 

(d) The fourth method was a Pepex “automated” peak picking. A single set of Pepex parameters 
was chosen that matched the unbiased peak picking, (a) above, as well as possible. The 
subjectively, as judged by a human operator, best compromise performance was achieved using 
a relative peak intensity threshold, a signal/noise threshold of 1.5, and a noise density of 0.0005. 

These four user-dependent peak picking methods were selected to provide relevant comparisons 
for the user-independent peak picking. The two manual methods, (a) and (b), represent how well a 
human operator can do when being very thorough (the unbiased peak picking) and when working 
quickly with the aid of a peak picking software (the biased peak picking). The two “automated” 
methods, (c) and (d), represent how good a specific peak picking tool can be at automatic peak 
picking when tuned by human operators. It is important to note, however, that both human operators 
who tuned the peak picking software were aware of a “true” answer (the biased and the unbiased 
manually picked peak lists) and the results with these automatically picked peak lists are therefore 
likely to be somewhat positively biased. 



3.2 Identifying and removing contamination peaks 
Contamination peaks were identified and removed before the peak lists were submitted to Mascot 

[6] for protein identification. All gel pieces included in this study were produced at the same time and 
it was therefore reasonable to expect similar contamination in essentially all samples. The 
contamination peaks were defined as those peaks that occurred unreasonably often in the spectra, 
using the algorithm described by Levander et al. [18]: Peaks with signal/noise ratios above 1.5 were 
picked from all 38 spectra and it was noted how often an individual peak occurred. For instance, if a 
peak occurred 38 times then it occurred 38/38 = 100% of the time; this was the case for, e.g., the 
trypsin 842.5 Da peak. The number of occurrences for each peak was then compared to the chance 
probability for a peak with the observed mass to occur several times in the experiment, based on the 
distribution of peptide masses in protein databases. If the observed number of observations exceeded 
the chance probability by more than two standard deviations, then the observed peak was labeled as a 
background peak. This resulted in 37 background peaks, many of which matched to (methylated) 
peptides from pig trypsin and human keratin. 

3.3 Database protein scoring 
All user-dependent peak sets were scored against SwissProt, version October 31 2001, using the 

Mascot tool from Matrix Science [6]. The settings for the Mascot searches were: Mass tolerance = 50 
ppm, missed cleavages = 1, fixed modifications = carbamidomethylation of cysteine, variable 
modifications = methionine oxidation, species = all. 

3.4 Combining results from multiple peak lists 
There is no such thing as a “true” peak list: Different human experts pick different peak lists and 

automatic peak detection tools pick different peaks depending on the parameter settings. It should 
therefore be a good idea to combine results from several users or from several parameter settings; 
effectively integrating over parameter values so that the result becomes user-independent (i.e. no 
human operator is needed to tune the software). To test this idea, we varied the spectrum noise level 
estimation and the signal-to-noise ratio of accepted peaks. In the Pepex software this was done by 
varying the relative noise density parameter with the two values {0.0005, 0.001} and the signal-to-
noise cut off with the seven values {1, 1.5, 2, 2.5, 3, 3.5, 4}, respectively, yielding a total of 2×7 = 14 
peak sets for each spectrum. The number of peaks in the peak sets then varied between 0 and 450 
(after contamination peaks had been removed). These peak sets were then submitted individually to 
the Mascot protein identification tool and combined using a logistic perceptron [19]. The combined 
protein identification success was then compared to the user-dependent peak sets described above. 

The logistic perceptron is a single layer neural network with a logistic output unit, i.e. it is a 
function that takes a number of input variables x1, x2, ..., xm, and outputs a number y between zero and 
one. The logistic perceptron’s functional form is 
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where v0, v1, v2, ..., vm are free parameters. 
The logistic perceptron was trained to recognize a correct match and output a high value (i.e. close 

to one) for a correct protein identity and a low value (i.e. close to zero) for an incorrect protein 
identity. This was done is the following way: A human expert listed all the correct protein identities 
(this is described later in this paper) and all other reported protein identities were labeled incorrect. 
The desired output for correct (true) protein identities was set to one and the desired output for 



incorrect (false) protein identities was set to zero. The perceptron then received information about the 
size of the database protein, the Mascot scores for the 14 peak sets, and the query lengths for the 14 
peak sets (a total of 29 inputs). That is, the input variables where: x1 = size of matched database 
protein, xk+1 = the Mascot score for peak list number k, and xk+15 = the number of peaks in peak list 
number k. The protein identities reported by Mascot on 37 of the 38 spectra were then used to train 
the perceptron, meaning that the parameters v0, v1, v2, ..., vm were tuned so that the sum square error 
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was minimized (d(n) denotes the desired output value, zero or one, for inputs x(n)). The resilient 
propagation method [20] with 300 weight updates was used for the minimization; this method is 
similar to the more commonly known gradient descent method. The trained perceptron was then used 
to categorize the reported protein identities on the 38th spectrum, which it had not seen during 
training, as being either correct or incorrect. This procedure was then repeated 38 times so that out-
of-sample judgments could be made by the perceptron on all the 38 spectra (this procedure is often 
referred to as leave-one-out cross-validation).  

The described logistic perceptron method corresponds to a pattern recognition approach to the 
protein identification problem. The logistic perceptron is trained to recognize the characteristics for a 
correct protein identity when several different peak sets are used. The logistic perceptron is similar, 
but not identical, to the classical logistic regression model [21], and the logistic perceptron’s output 
can be interpreted as an estimate of the posterior probability p(correct | x). That is, the probability 
that the reported protein identity is correct, given the observation x. This output can be further 
processed; one can require the estimated probability to be higher than a given threshold, e.g., 0.7. A 
threshold of 0.5 was used in the work described here. 

4 Results 

4.1 Similarities and differences between user-dependent peak lists 
Some general observations, illustrated in Figure 2, could be made for manual and “automatic” 

peak sets. First of all, the human operator was an inconsistent peak picker and the unbiased manual 
peak sets did not agree completely with the biased peak picking. Furthermore, there were significant 
differences between the peak sets that were picked “automatically”. 

The peaks picked by the operator by manually tuning Data Explorer (biased peak picking) were 
compared to peak sets picked by the same individual two years earlier on the same spectra, also using 
Data Explorer. The new peak lists were on average about twice as big as the old ones but the smaller 
peak lists were not complete subsets of the larger peak lists. On average, only 56% of the new peaks 
matched the old peaks for the same spectrum and 92% of the smaller peak sets matched the larger 
peak sets for the same spectra. Thus, the operator disagreed with himself on at least one out of every 
ten peaks even though the same peak detection software was used on both occasions. This was 
because the operator had changed his opinion on how peaks should be picked. The operator had 
prioritized avoiding false positive peaks in the two year old lists, whereas priority was given to 
avoiding false negatives in the new peak lists; a “false positive” peak denotes a peak that is not in the 
spectrum but that is nevertheless picked by the software, and a “false negative” peak is a peak that is 
in the spectrum but that is missed by the software. Both priorities are reasonable and the observed 
difference between the peak lists illustrates how subjective manual peak picking is. 



The unbiased manual peak lists contained on average about twice as many peaks as the biased 
manual peak lists. On average 43% of the unbiased manual peaks agreed with the biased peaks, and 
81% of the biased peaks agreed with the unbiased peaks. Thus, the persons selecting peaks in an 
unbiased way disagreed with the operator who used Data Explorer on at least two in every ten peaks.  

The peak sets picked “automatically” by the Voyager 5 Data Explorer software were on average 
about half the size of the biased manual peak lists selected by the operator. Almost all peaks picked 
“automatically” by Data Explorer agreed with the operator, which could be explained by the fact that 
the operator used Data Explorer to select peaks. It is clear that the operator preferred a conservative 
parameter setting for Data Explorer, leading to small peak sets. The parameter setting for Pepex was, 
in comparison, much less conservative and the peak lists were about 50% larger than the peak lists 
selected by the operator but smaller than the fully manual peak sets. On average, about 80% of the 
operator's peaks agreed with the Pepex peaks. The situation is illustrated with Venn diagrams in 
Figure 2. 

 
Figure 2 Venn diagrams illustrating the agreement and differences between the different peak sets. The “biased 

manual I” and “biased manual II” refers to the two different occasions when the biased manual peak picking was done; 
“biased manual I” is the older of the peak sets. The peak sets are explained in the text. 

The subjectivity and uncertainty of peak picking is further illustrated in Figure 3, where the 
different peak sets are compared to a biased and an unbiased peak set using the efficiency and purity 
statistics. These are defined as efficiency = (number of agreeing peaks)/(number of peaks picked 
manually) and purity = (number of agreeing peaks)/(number of peaks picked by automated software). 
If the software finds all the peaks that were picked manually, then the efficiency equals one. If the 
software pick no peaks that disagree with the manual peak list, then the purity equals one. In data 
mining literature, efficiency is often referred to as “recall” and purity as “precision”. In medical 
literature, efficiency is called “sensitivity” and purity is called “positive predictive value”.  

Figure 3 (lower part) illustrates how the operator has the freedom to choose anything from a small 
peak set that is pure but inefficient to a peak set that is impure but efficient. However, there is no rule 
that tells which peak set is better than the others and peak picking is therefore a process where one 
should use more than one parameter setting to get stable and reliable results. The top left panel in 
Figure 3 shows the number of correctly (i.e. agreeing with the manually picked peaks) and 
incorrectly (i.e. not agreeing with the manually picked peaks) picked peaks in a single spectrum as a 
function of a user specified signal-to-noise threshold. A high signal-to-noise threshold means making 
few “mistakes” but also missing potentially informative peaks. The top right panel in Figure 3 shows 



the corresponding purity and efficiency numbers (the unbiased manual peak list contained 87 peaks 
in this case). The lower left panel in Figure 3 shows the (efficiency, purity) pairs when a correct peak 
is defined by the unbiased manual peak set. The lower right panel in Figure 3 shows the (efficiency, 
purity) pairs plotted in an efficiency-purity graph when a correct peak is defined by the biased 
manual peak set. The filled square marks the particular peak set that was used in the automated Pepex 
peak picking. The fixed parameters for Pepex were selected to be as close (on average for all spectra) 
as possible to the upper right corner when comparing against the unbiased manual peak set. 

It should be evident from Figure 3 that there exists no such thing as an objectively optimal set of 
parameters. The optimality of parameters depends very much on who defines the correct peaks. 

 
Figure 3 Illustration of the statistical nature of peak detection. The “manual” peak picking referred to is the unbiased 

manual peak list, and the “human expert” is the biased manual peak list. Each cross in the lower graphs corresponds to 
one peak set (one parameter setting for the peak picking algorithm), and the filled square marks the peak set achieved 
when the best compromise set of parameters were used for the Pepex peak picking algorithm. Each pair of 
purity/efficiency bars in the upper right graph corresponds to one cross in the lower left graph (the bar graph only shows 
some of the peak sets, in order to make the bar graph easier to read). More explanation is given in the text. 

4.2 Protein identification efficiency 
The number of correct and false protein identifications was compared for the different peak 

picking strategies and for the strategy where results were combined. A protein identity was deemed 
to be correct by looking at the size and pI of the protein compared to the spot position on the gel, the 
mass error of matched peaks versus theoretical peptide masses, the protein being of human origin, 
and the sequence coverage of the protein by the matching peptides. All these different aspects were 
judged subjectively by an experienced operator. A false hit was defined as a reported significant 
identity that deviated from one or more of the expected values mentioned above. Proteins with more 
than 1600 residues were ignored, because of the poor database statistics for large proteins, and 
obvious contamination proteins (keratins) were ignored. 

The protein identification results are summarized in Figure 4. The best “automatic” result was 
achieved using the user-dependent Pepex peak set and the worst “automatic” result was achieved 



with the user-dependent Data Explorer peak set. This does probably not reflect any quality difference 
between the peak picking algorithms. It is rather a consequence of how the parameters were set for 
the two tools. The difference in result illustrates how difficult/risky it is to manually tune peak 
picking software and select a single set of parameters.  

The unbiased manual peak sets (a) produced two false hits, of which one was of human origin. 
The biased manual peak sets (b) produced one false hit, which was a protein of non-human origin. 
The user-dependent “automatic” Data Explorer peak sets (c) produced two false hits, none of human 
origin, and the user-dependent “automatic” Pepex peak sets (d) produced no false hit. These 
"automatic" results are likely to be overly optimistic since the parameters of the peak picking 
algorithms were set based on knowledge from the manual peak picking. 

The logistic perceptron (Pc) gave six false hits. One of the false hits (for a spectrum classified as 
“strong”) was on an extremely short protein (26 residues) of non-human origin. In one case, the 
perceptron gave as top hit a protein that was not reported as a significant hit by Mascot when any of 
the other peak sets were used. This protein (human HSP 90) was, however, judged as correct by the 
experienced operator based on molecular weight, pI and peptide mass precision. In this particular 
case, the perceptron also reported three other proteins of non-human origin as hits (i.e. this spectrum 
accounted for half of the false hits produced by the perceptron). If the decision threshold for the 
perceptron was increased from 0.5 to 0.7 then the number of false hits decreased by four and the 
number of correctly identified proteins decreased by only one. The perceptron was thus more 
uncertain about false hits than about correct hits. 

The sequence coverage varied between the peak sets. The average sequence coverage with the 
automatic Data Explorer peak set was 25%. The average sequence coverage with the automatic 
Pepex peak set was 32%. The largest sequence coverage was achieved with the logistic perceptron 
method; the average sequence coverage was here 45%, 1.5 times the average sequence coverage 
achieved by the human operator (30%). This is of course not surprising since the multiple peak lists 
method includes some very large peak lists. 

 



Figure 4 The protein identification results when using the different peak detection strategies and weighting strategies. 
The “Pc” label refers to the logistic perceptron approach where scores from several peak lists are combined. The other 
labels refer to the listing of different peak picking strategies in the text. The results are discussed in more detail in the text. 

The time complexity varied much between methods. For the biased manual peak picking the 
operator spent about 10-15 minutes per spectrum. The unbiased manual peak picking took 20-45 
minutes per spectrum. The automated Pepex runs took about 3-5 seconds per spectrum (excluding the 
time devoted to parameter tuning) and the automated Data Explorer took only a few seconds per 
spectrum (again excluding the time for parameter tuning). The Mascot runs took 5-10 seconds per 
peak list. A repeated search with 14 peak sets, using Pepex combined with Mascot, took about 2 
minutes per spectrum, without the need for any manual parameter tuning. 

5 Conclusions 
We have suggested a method for combining results from several peak sets in peptide mass 

fingerprint experiments. The motivation being that one should not be satisfied with just a single 
parameter setting for a peak picking software but combine information from several peak sets that 
contain information about both strong and weak peaks in the spectrum. The suggested method 
provides completely automatic and reproducible peak picking and achieves at least as good protein 
identification as manual operation by a human operator using a commercial peak selection tool. 
Combining several peak sets in this way removes the arbitrariness of using a single parameter setting 
for a peak picking software. This is important since manual tuning of peak detection software turned 
out, in our experiments, to produce protein identification performance that fell anywhere between 
poor and excellent. 

The largest number of proteins was found using multiple peak sets combined with the logistic 
perceptron. This method even found proteins that had low Mascot score but where an experienced 
operator believed the identification to be correct (albeit at the price of three false positives); this is 
remarkable and shows that the logistic perceptron was able to make judgments that reflected the 
human operator. The overall best protein identification, maximizing correct hits and minimizing false 
hits, was achieved with the tuned Pepex algorithm. However, this required considerable time in the 
tuning process and the end result is biased; it is questionable whether this could be repeated at a 
different laboratory by other people since parameter tuning is so subjective. User-independent 
methods that employ several peak sets must therefore be considered better in the long run.  

The annotation hit-rate was essentially equally good for all methods on high-abundant proteins or 
proteins with strong MALDI response (Figure 4) whereas the hit-rate on low-abundant protein spots, 
or proteins with weak MALDI response, from the 2D-gels was 50% at best and 25% at worst. The 
best yield on weak spectra was achieved using the logistic perceptron strategy with multiple peak sets 
and the worst yield was achieved by using a user-dependent strategy with a single peak set from 
software tuned by a human operator (Figure 4). This difference can be critical since valuable new 
biological and pharmacological information is likely to come from the group of proteins with weak 
MALDI response and/or low abundance. 

The particular strengths of the proposed method are its objectivity, automation, and improved 
sensitivity for weak spectra. The method can be completely automated, it requires no subjective 
parameter tuning, and it is very successful at identifying proteins. These are all essential properties 
for a high-throughput protein identification method. 
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