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An ordinary parton shower

• Treats:

p ⊗ f ⊗ spin average ⊗ Nc → ∞ color

• Emits one particle at the time

• Assumes an ordering variable like k⊥, virtuality, angle

∆(t) = exp(−

∫ t

t0

dt′

t′
αs(t

′)

∫

...)

• Resums large logs which compensate for the smallness of αs

• is a Markov process at the |A|2 level

(the next step depends on the state, but not on the history)
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The first generation parton shower

• A parton can be seen as emitted from one other parton using

pure 1 → 2 splitting (JETSET)

i

• Resums the collinear splitting probability using DGLAP splitting

functions

∆k(t) = exp(−
∑

i

∫ t

t0

dt′

t′
αs(t

′)

∫

dz

2π
Pik)
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A second generation parton shower

• Resums also the softly enhanced radiation probabilities in the

Nc → ∞ limit

∆k(t) = exp(−
2

π

∑

dipoles i,j(i)

∫ t

t0

dt′

t′
αs(t

′)

∫

dydφ

2π

k2T pi.pj
2 pi.k pj .k

)

• In the soft limit a parton can be seen as being emitted

coherently from a pair of color connected partons,

2 → 3 splitting from a color point of view

i

j

ij dipole
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A dipole shower in the large Nc limit

• A dipole shower can easily be thought of in the Nc → ∞ limit

i

j

k

Coherent from i,j

Coherent from j,k

No coherent emision from i,k

• In this limit only ”color neighbors” radiate, i.e., only neighboring

partons on the quark-lines in the basis radiate

• All standard parton showers (Pythia, Herwig, Sherpa) work in

this Nc → ∞ limit
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Why worry about Nc suppressed terms?

• “ Non-leading color terms are suppressed by 1/N2
c ”

(not quite true, but assume for now that it is)

• If one starts with only one color flow the number of leading color

emission possibilities grows just like ∼ Npartons

• The total number of possibilities for coherent emission grows as

∼ N2
partons (taking any pair)

• If non-leading terms always were N2
c suppressed, the relative

importance can grow like ∼ (Npartons)/N
2
c

(slower with random averaging)

• In general one does not start with only one color flow

→ relative importance of suppressed terms can be larger, up to

(Nqq +Ng)!/N
2
c
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1/Nc suppressed terms

That non-leading color terms are suppressed by 1/N2
c , is guaranteed

only for same order αs diagrams with only gluons (’t Hooft 1973)

2

= = TR

= TR = TR CF = TR CF Nc = TR TR
N2
c−1
Nc

Nc ∝ N2
c

= =

= TR −TR
Nc

− TR
Nc

CF Nc = 0 − TR TR
N2
c−1
Nc

∼ Nc= TR

∗
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1/Nc-suppressed terms

For a parton shower there may also be terms which only are

suppressed by one power of Nc

= =

∗

= TR
−TR

Nc

Is 0 without emission, with ∼ N2
c

did not enter in any form,

genuine ”shower” contribution

Is ∼ Nc without emission, with
∼ N2

c ”included” in shower,

contribution from hard process

The leading Nc contribution scales as N2
c before emission and N3

c

after
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• “ Non-leading color terms tend to be suppressed by 1/N2
c ”

counter examples exist

• Is true for same order αs diagrams with only gluons (’t Hooft

1973)

• A parton shower is an all order (Sudakov) exponentiation

∆(t) = exp(−

∫ t

t0

dt′

t′
αs(t)

∫

...)

• Certainly not only one power in αs is needed
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Some rescuing mechanisms?

• In the collinearly (rather than softly) enhanced regions, the

emitted parton can be seen as coming from only one parton and

the color structure is trivial → no need for Nc suppressed terms

• Random averaging:

The suppressed terms sometimes contribute positively to the

cross section, and sometimes negatively. Perhaps they tend to

cancel quicker than expected? (Via correlations in emission?)

• αs suppression: 1/N
1
c suppressed terms tend to also be

associated with powers of α2
s , but remember:

Large logs accompany αs, this is why we need resummation
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Some rescuing mechanisms?

• In the collinearly (rather than softly) enhanced regions, the

emitted parton can be seen as coming from only one parton and

the color structure is trivial → no need for Nc suppressed terms

• Random averaging:

The suppressed terms sometimes contribute positively to the

cross section, and sometimes negatively. Perhaps they tend to

cancel quicker than expected? (Via correlations in emission?)

• αs suppression: 1/N
1
c suppressed terms tend to also be

associated with powers of α2
s , but remember:

Large logs accompany αs, this is why we need resummation

Yes, several
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Major challenges for SU(3) showers

Three major challenges dealt with so far

• Evolution with amplitude information, we have a Markov process

at the amplitude level (more later)

• Negative contributions to radiation probability, ”negative

splitting kernels”, treated using interleaved veto/competition

algorithm (S. Plätzer & M. S., EPJ Plus 127 (2012) 26)

• Keeping track of the color structure for an arbitrary number of

partons (next)
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Dealing with color space

• We never observe individual colors

→ we are only interested in color summed/averaged quantities

• For given external partons, the color space is a finite dimensional

vector space equipped with a scalar product

〈A,B〉 =
∑

a,b,c,...

(Aa,b,c,...)
∗Ba,b,c,...

Example: If

A =
∑

g

(tg)a b(t
g)c d =

a

b

c

dg
,

then 〈A|A〉 =
∑

a,b,c,d,g,h(t
h)b a(t

h)d c(t
g)a b(t

g)c d
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• One way of dealing with color space is to just square the

amplitudes one by one as they are encountered

• Alternatively, we may use a basis (spanning set)
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The standard treatment: Trace bases
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2

s(g
αδgβγ

− gαγgβδ)

a, α b, β

c, γ d, δ
×ig2

s(g
αβgγδ

− gαδgβγ) ×ig2

s(g
αβgγδ

− gαγgβδ)

(read counter clockwise)

• Every 3g vertex can be replaced using:

= 1
TR

(

i fa b c

a

b c

− )

• After this every internal gluon can be removed using:

= TR − TR
Nc
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• This can be applied to any QCD amplitude, tree level or beyond

• In general an amplitude can be written as linear combination of

different color structures, like

A + +B ...

• For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)
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The above type of color structures can be used as a spanning set, a

trace basis. (Technically the set of all such color structures is in

general overcomplete, so it is rather a spanning set.)

These bases have some nice properties

• The effect of gluon emission is easily described:

Convention: + when inserting after, minus when inserting before.

= −→

• So is the effect of gluon exchange:

= TR( − +

g1 g2 g3 g4 g1 g2 g3 g4 g2 g3 g1 g4

Convention: + when inserting after, - when inserting before

)

g1 g2 g3 g4
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ColorFull
For the purpose of treating a general QCD color structure I have

written a C++ color algebra code, ColorFull, which:

• Is used in the color shower with Simon Plätzer

• Automatically creates a “trace basis” for any number and kind

of partons, and to arbitrary order in αs

• Squares color amplitudes

• Describes the effect of gluon emission, and gluon exchange

• Interfaces to Herwig++ (≥ 2.7) via Simon’s Matchbox code

• Is used for NLO electroweak Higgs + 3 jet production, in

collaboration with Francisco Campanario, Terrance Figy and

Simon Plätzer, arXiv:1308.2932, accepted for publication in PRL

ColorFull is now publicly available in a pre-release version at

colorfull.hepforge.org.
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But...

• this type of basis is non-orthogonal and overcomplete

(for more than a few partons)

• ... and the number of basis vectors grows as a factorial in

Ng +Nqq

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond qq + 7 gluons

• Would be nice with minimal orthogonal basis
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Minimal orthogonal bases for color
spaces

In collaboration with Stefan Keppeler (Tübingen)

• Want orthogonal minimal basis for color space

• Basis vectors can be enumerated using Young tableaux
multiplication, for example for gg → gg

⊗ =
(0) + ⊕ ⊕ ⊕ ⊕ ⊕ 0

1 8 8 10 10 27 0

and constructed if projection operators are known

• The problem is the construction of the corresponding projection

operators; the Young-tableaux operate with ”quark-units” but

the physical particles include anti-quarks and gluons
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• One may think that the problem of constructing group theory

based multiplet bases should have been solved a long time ago

• The 2g → 2g case was solved in the 60’s (Nc = 3)

• However, until recently only a few cases had been dealt with,

those for which (loosely speaking) nothing more complicated

than two gluon projection operators is needed

• About one year ago me and Stefan Keppeler presented a general

recipe for constructing gluon projection operators. From these

we also know how to construct orthogonal bases for any number

and kind of partons, JHEP09(2012)124, arXiv:1207.0609
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• For many partons the size of the vector space is much smaller

for Nc = 3 (exponential), compared to for Nc → ∞ (factorial)

Case Vectors Nc = 3 Vectors, general case

4 gluons 8 9

6 gluons 145 265

8 gluons 3 598 14 833

10 gluons 107 160 1 334 961

Number of basis vectors for Ng → Ng gluons

without imposing vectors to appear in charge conjugation

invariant combinations
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Conclusions for the color space
• One strategy is to use “trace bases”. These are not orthogonal,

but have other advantages

• ColorFull is a C++ tool for treating the color structure in trace

bases, colorfull.hepforge.org

• Alternatively one may want to use orthogonal multiplet bases

S. Keppeler & M.S., JHEP09(2012)124, arXiv:1207.0609

• Number of basis vectors then grows only exponentially for

Nc = 3

• This has the potential to very significantly speed up exact

calculations in the color space of SU(Nc)

• However, in order to use this in an optimized way, we need to

understand how to sort QCD amplitudes in this basis in an

efficient way (work in progress, but I’m optimistic)
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Basics of our shower

S. Plätzer & M.S., JHEP 07(2012)042, arXiv:1201.0260

• Built on the Catani-Seymour dipole factorization

(S.Plätzer & S. Gieseke, JHEP 1101, 024 (2011) & 1109.6256)

• Parton ĩj splitting to partons i and j, and parton k̃ absorbs the

longitudinal recoil such that all partons remain on shell

|Mn+1(..., pi, ..., pj , ..., pk, ...)|
2 ≈

∑

k 6=i,j

1

2pi · pj
〈Mn(..., pĩj , ..., pk̃, ...)|Vij,k(pi, pj , pk)|Mn(..., pĩj , ..., pk̃, ...)〉

• In a standard parton shower parton ĩj and k̃ would have to be

”color connected”,

Vij,k = −8παsVij,k

Tĩj ·Tk̃

T2

ĩj

→ 8παs

Vij,k

1 + δĩj
δ(ĩj, k̃ color connected)

we keep all pairs (δĩj = 1 for gluon, 0 else, T2
ĩj

is a convention)
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For the emission probability this means that:

dPij,k(p
2
⊥, z) = Vij,k(p

2
⊥, z)

dφn+1(p
2
⊥, z)

dφn

×
−1

T2
ĩj

〈Mn|Tĩj ·Tk̃|Mn〉

|Mn|2

rather than

dPij,k(p
2
⊥, z) = Vij,k(p

2
⊥, z)

dφn+1(p
2
⊥, z)

dφn

×
δ(ĩj, k̃ color connected)

1 + δĩj

The splitting kernels read:

Vqg,k(pi, pj , pk) = CF

(

2(1− z)

(1− z)2 + p2⊥/sijk
− (1 + z)

)

Vgg,k(pi, pj , pk) = 2CA

(

1− z

(1− z)2 + p2⊥/sijk
+

z

z2 + p2⊥/sijk
− 2 + z(1− z)

)
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Evolution with amplitude information

• Assume we have a basis for the color space

|Mn〉 =

dn
∑

α=1

cn,α|αn〉 ↔ Mn = (cn,1, ..., cn,dn
)T

(this basis need not be orthogonal)

• |Mn〉 is known for the hard process

• How do we get |Mn+1〉 after emission?
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• Observe that

|Mn|
2 = M†

nSnMn = Tr
(

Sn ×MnM
†
n

)

(where Sn is the color scalar product matrix)

and

〈Mn|Tĩj ·Tk̃|Mn〉 = Tr
(

Sn+1 × Tk̃,nMnM
†
nT

†

ĩj,n

)

• Use an ”amplitude matrix” Mn = MnM
†
n as basic object

Mn+1 = −
∑

i 6=j

∑

k 6=i,j

4παs

pi · pj

Vij,k(pi, pj , pk)

T2
ĩj

Tk̃,nMnT
†

ĩj,n

where

Mhard = MhardM
†

hard
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Our current implementation

A proof of concept:

• e+e− → jets, a LEP-like setting

• Fixed αs= 0.112

• Up to 6 gluons, only gluon emission, g → qq is suppressed

anyway, and there is no non-trivial color structure

• No hadronization, we don’t want to spoil our Nc = 3 parton

shower by attaching an Nc → ∞ hadronization model. Also,

comparing showers in a fair way, would require retuning the

hadronized Nc = 3 shower

• No ”virtual”corrections, i.e. no color rearrangement without

radiation, no Coulomb gluons
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Three different treatments of color space

• Full, exact SU(3) treatment, all color correlations

• Shower, resembles standard showers, CF for gluon emission off

quarks is exact but non-trivial color suppressed terms are

dropped

• Strict large-Nc, all Nc suppressed terms dropped,

CF = 4/3 → 3/2 (TR = 1/2)
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Results: Number of emissions
First, simply consider the number of emissions

0.01

0.1

1

number of emissions

DipoleShower + ColorFull

0.6
0.8

1
1.2
1.4

1 2 3 4 5 6

nemissions

full
shower

strict large-Nc

ev
en

t
fr

ac
ti

on
x
/f

u
ll

... this is not an observable, but it is a genuine uncertainty on the

number of emissions in the perturbative part of a parton shower
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Results: Thrust

For standard observables small effects, here thrust T = maxn

∑

i
|pi·n|

∑

i
|pi|
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N
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x
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u
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Results: Angular distribution
Cosine of angle between third and fourth jet

0
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x
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u
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Results: Some tailored observables
For tailored observables we find larger differences

0.001

0.01

0.1

1

average transverse momentum w.r.t. ~n3

DipoleShower + ColorFull
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−

1
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/d
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〉
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/f

u
ll
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Average transverse momentum and rapidity of softer particles with

respect to the thrust axis defined by the three hardest partons
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Concluded for our LEP-like shower:

• For standard observables we find small deviations for LEP, of

order a few percent

• Leading Nc was probably a very good approximation for

standard observables at LEP

• For tailored observables we find larger differences ≈ 20%

• Keeping CF to its Nc = 3 value (4/3) (as is done in standard

showers), rather than 3/2, tends to improve the approximation

(TR = 1/2)

• At the LHC we have many more colored particles, so (many

more)2 possible color suppressed interference terms
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Different sources of Nc-suppressed terms
• In a tree level parton shower (no virtual exchange, only

emission), Nc-suppressed terms are ignored

→ one source of ignored 1/N
(2)
c (included)

• At loop level, another source of suppressed terms come from

virtual gluon exchanges which rearrange the color structure

→ The color rearranging terms tend to be suppressed, but in

exp(−

∫ t

t0

dt′

t′
(moderate + small))

the small number is not irrelevant when
∫ t

t0

dt′

t′
is large!

→ different source of Nc-suppressed terms (missing)

• Hadronization: How does cluster or sting fragmentaion work for

Nc = 3, starting from a ”quantum shower” (new modeling

needed)
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Other remaining challenges:

• Hadronic initial state: We should move to LHC phenomenology

• Gluon splitting to qq (nothing conceptually new)

• The color structure, with the current implementation we cannot

go beyond ∼ 8 gluons +qq-pairs. Should we use another basis?

Should we approximate the color structure by keeping only some

color suppressed terms?
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Conclusions and outlook

• We have written a first Nc = 3 parton shower

• To accomplish this we had to deal with several new challenges:

- complicated color space, ColorFull, colorfull.hepforge.org

- negative probabilities, (EPJ Plus 127 (2012) 26)

- quantum evolution, (JHEP 07(2012)042, arXiv:1201.0260)

• However many challenges still remain:

- initial state hadrons

- virtual gluon exchange

- better treatment of color space

- hadronization

Thank you for your attention!
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Backup: The Sudakov decomposition

In each splitting a parton ĩj splits into i and j whereas a spectator k̃

takes up the longitudinal recoil

pi = zpĩj +
p2⊥
zsijk

pk̃ + k⊥ (1)

pj = (1− z)pĩj +
p2⊥

(1− z)sijk
pk̃ − k⊥ (2)

pk =

(

1−
p2⊥

z(1− z)sijk

)

pk̃ , (3)

with p2
ĩj
= p2

k̃
= 0, a space like transverse momentum k⊥ with

k2⊥ = −p2⊥ and k⊥ · pĩj = k⊥ · pk̃ = 0. With this parametrization we

also have sijk = (pi + pj + pk)
2 = (pĩj + pk̃)

2.
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Backup: Thrust

For standard observables small effects, here thrust T = maxn

∑

i
|pi·n|

∑

i
|pi|
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Backup: Importance of g → qq splitting
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Backup: Jet separation
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j )(1− cos θij)/s
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Backup: Gluon exchange
A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
Nc

+
canceling N  −
suppressed
terms

c

+
canceling N  −
suppressed
terms

c

Fierz

Fierz

2 2

1

2

1

2
__

_
2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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Backup: The size of the vector space
and the trace basis

• For general Nc the trace type bases size grows as a factorial

Nvec[nq, Ng] = Nvec[nq, Ng − 1](Ng − 1 + nq) +Nvec[nq, Ng − 2](Ng − 1)

where

Nvec[nq, 0] = nq!

Nvec[nq, 1] = nqnq!

• The size of the vector spaces for finite Nc asymptotically grows

as an exponential in the number of gluons/qq-pairs.
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Backup: Dealing with gluons

• Consider gg → gg, the basis vectors can be enumerated using
Young tableaux multiplication

⊗ =
• ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 0

1 8 8 10 10 27 0

• As color is conserved an incoming multiplet of a certain kind can

only go to an outgoing multiplet of the same kind,

1 → 1, 8 → 8... → We know what to expect

(Charge conjugation implies that some vectors only occur

together)

• The problem is the construction of the corresponding projection

operators; the Young tableaux operate with “quark-units” we

need to deal also with gluons
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• For two gluons, there are two octet projectors, one singlet

projector, and 4 “new” projectors, 10, 10, 27, and for general

Nc, “0”

• It turns out that the new projectors can be seen as corresponding

to different symmetries w.r.t. quark and anti-quark units, for

example the decuplet can be seen as corresponding to

P10 ∝

1 2

1
2

− octet(s)− (singlet)

Similarly the anti-decuplet corresponds to 1
2

⊗ 1 2 , the 27-plet

corresponds to 1 2 ⊗ 1 2 and the 0-plet to 1
2

⊗
1
2

(Dokshitzer and Marchesini 2006, others before using different

methods)
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Backup: New idea: Could this work in
general?

On the one hand side

g1 ⊗ g2 ⊗ ....⊗ gn ⊆ (q1 ⊗ q̄1)⊗ (q2 ⊗ q̄2)⊗ ...⊗ (qn ⊗ q̄n)

so there is hope...

On the other hand...

• Why should it?

• In general there are many instances of a multiplet, how do we

know we construct all?
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Key observation:

• Starting in a given multiplet, corresponding to some qq

symmetries, such as 10, from 1 2 ⊗
1
2
, it turns out that for each

way of attaching a quark box to 1 2 and an anti-quark box to 1
2
,

to there is at most one new multiplet! For example, the

projector P10,35 can be seen as coming from

P10P10

1 3
2

1 2 3

after having projected out ”old” multiplets

• In fact, for large enough Nc, there is precisely one new multiplet

for each set of qq symmetries
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• In this way we can construct projection operators for an

arbitrary number of gluons

• Using these we can find orthogonal minimal multiplet bases for

any number of gluons

• From these we can construct orthogonal minimal bases for any

number of quarks and gluons

• We have explicitly constructed orthogonal 3g → 3g projectors

and the corresponding six gluon orthogonal bases

JHEP09(2012)124, arXiv:1207.0609
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Backup: Some example projectors

P8a,8a
g1 g2 g3 g4 g5 g6

=
1

T 2
R

1

4N2
c

ifg1 g2 i1ifi1 g3 i2ifg4 g5 i3ifi3 g6 i2

P8s,27
g1 g2 g3 g4 g5 g6

=
1

TR

Nc

2(N2
c − 4)

dg1 g2 i1P
27
i1 g3 i2 g6

di2 g4 g5

P27,8
g1 g2 g3 g4 g5 g6

=
4(Nc + 1)

N2
c (Nc + 3)

P27
g1 g2 i1 g3

P27
i1 g6 g4 g5

P27,64=c111c111
g1 g2 g3 g4 g5 g6

=
1

T 3
R

T27,64
g1 g2 g3 g4 g5 g6

−
N2

c

162(Nc + 1)(Nc + 2)
P27,8

g1 g2 g3 g4 g5 g6

−
N2

c −Nc − 2

81Nc (Nc + 2)
P27,27s

g1 g2 g3 g4 g5 g6
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Backup: Three gluon multiplets

SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

((45)8s6)1 2 × ((45)8s6)8s or a ((45)8s6)10 ((45)8s6)10 ((45)8s6)27 ((45)8s6)0

((45)8a6)1 2 × ((45)8a6)8s or a ((45)8a6)10 ((45)8a6)10 ((45)8a6)27 ((45)8a6)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)276)8 ((45)276)10 ((45)276)10 ((45)276)27 ((45)06)0

((45)06)8 ((45)06)10 ((45)06)10 ((45)276)27 ((45)06)0

SU(3) dim 64 35 35 0

Multiplet c111c111 c111c21 c21c111 c21c21

((45)276)64 ((45)106)35 ((45)106)35 ((45)106)c21c21

((45)276)35 ((45)276)35 ((45)106)c21c21

((45)276)c21c21

((45)06)c21c21

SU(3) dim 0 0 0 0 0

Multiplet c111c3 c3c111 c21c3 c3c21 c3c3

((45)106)c111c3 ((45)106)c3c111 ((45)106)c21c3 ((45)106)c3c21 ((45)06)c3c3

((45)06)c21c3 ((45)06)c3c21

Malin Sjödahl 49



Backup: SU(Nc) multiplets

• We find that the irreducible spaces in g⊗ng for varying Nc stand

in a one to one, or one to zero correspondence to each other!

(For each SU(3) multiplet there is an SU(5) version, but not

vice versa)

• Every multiplet in g⊗ng can be labeled in an Nc-independent
way using the lengths of the columns. For example

N
c
-1

1 N
c
-1

1 N
c

N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2

⊗ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ◦

8 8 1 8 8 10 10 27 0

I have not seen this anywhere else.. have you?
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