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Why SU(3) parton showers?

• Wisdom from LEP is that parton showers seem to do well with

the leading Nc approximation

• At LHC much more energy is available

→ many more colored partons

→ ”many more squared” color suppressed terms

• Often two quark-lines → importance of terms suppressed by

1/Nc rather than 1/N2
c should grow

• Also useful for exact NLO matching
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Basics of our shower
• Built on the Catani-Seymour dipole factorization

(S.Plätzer & S. Gieseke, JHEP 1101, 024 (2011) & 1109.6256)

• Parton ĩj splitting to partons i and j, and parton k̃ absorbs the

longitudinal recoil such that all partons remain on shell

|Mn+1(..., pi, ..., pj , ..., pk, ...)|2 ≈
∑

k 6=i,j

1

2pi · pj

〈Mn(..., pĩj , ..., pk̃, ...)|Vij,k(pi, pj , pk)|Mn(..., pĩj , ..., pk̃, ...)〉

• In a standard parton shower parton ĩj and k̃ would have to be

”color connected”,

Vij,k = −8παsVij,k

Tĩj · Tk̃

T2

ĩj

→ 8παs

Vij,k

1 + δĩj

δ(ĩj, k̃ color connected)

we keep all pairs (δĩj = 1 for gluon, 0 else, T
2
ĩj

is a convention)
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For the emission probability this means that:

dPij,k(p2
⊥, z) = Vij,k(p2

⊥, z)
dφn+1(p

2
⊥, z)

dφn

×
−1

T
2
ĩj

〈Mn|Tĩj · Tk̃|Mn〉

|Mn|2

rather than

dPij,k(p2
⊥, z) = Vij,k(p2

⊥, z)
dφn+1(p

2
⊥, z)

dφn

×
δ(ĩj, k̃ color connected)

1 + δĩj

The splitting kernels read:

Vqg,k(pi, pj , pk) = CF

(

2(1 − z)

(1 − z)2 + p2
⊥/sijk

− (1 + z)

)

Vgg,k(pi, pj , pk) = 2CA

(

1 − z

(1 − z)2 + p2
⊥/sijk

+
z

z2 + p2
⊥/sijk

− 2 + z(1 − z)

)
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Challenges

Three major new challenges

• Evolution with amplitude information (next)

• Negative contributions to radiation probability, ”negative

splitting kernels”, treated using interleaved veto/competition

algorithm (S. Plätzer & M. Sjodahl, EPJ Plus 127 (2012) 26)

• Keeping track of the color structure for an arbitrary number of

partons (more towards the end)
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Evolution with amplitude information

• Assume we have a basis for the color space

|Mn〉 =

dn
∑

α=1

cn,α|αn〉 ↔ Mn = (cn,1, ..., cn,dn
)T

(this basis need not be orthogonal)

• |Mn〉 is known for the hard process

• How do we get |Mn+1〉 after emission?
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• Observe that

|Mn|
2 = M†

nSnMn = Tr
(

Sn ×MnM
†
n

)

(where Sn is the color scalar product matrix)

and

〈Mn|Tĩj · Tk̃|Mn〉 = Tr
(

Sn+1 × Tk̃,nMnM
†
nT †

ĩj,n

)

• Use an ”amplitude matrix” Mn = MnM
†
n as basic object

Mn+1 = −
∑

i 6=j

∑

k 6=i,j

4παs

pi · pj

Vij,k(pi, pj , pk)

T
2
ĩj

Tk̃,nMnT †

ĩj,n

where

Mhard = MhardM
†

hard
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Our current implementation

A proof of concept:

• e+e− → jets, a LEP-like setting

• Fixed αs= 0.112

• Up to 6 gluons, only gluon emission, g → qq is suppressed

anyway, and there is no non-trivial color structure

• No hadronization, we don’t want to spoil our Nc = 3 parton

shower by attaching an Nc → ∞ hadronization model. Also,

comparing showers in a fair way, would require retuning the

hadronized Nc = 3 shower

• No ”virtual”corrections, i.e. no color rearrangement without

radiation, no Coulomb gluons
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Three different treatments of color space

• Full, exact SU(3) treatment, all color correlations

• Shower, resembles standard showers, CF for gluon emission off

quarks is exact but non-trivial color suppressed terms are

dropped

• Strict large-Nc, all Nc suppressed terms dropped,

CF = 4/3 → 3/2 (TR = 1/2)
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Results: Number of emissions
First, simply consider the number of emissions
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... this is not an observable, but it is a genuine uncertainty on the

number of emissions in the perturbative part of a parton shower
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Results: Thrust

For standard observables small effects, here thrust T = maxn

∑

i
|pi·n|

∑

i
|pi|
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Results: Angular distribution
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Results: Some tailored observables
For tailored observables we find larger differences
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Parton shower conclusions

• For standard observables we find small deviations for LEP, of

order a few percent

• Leading Nc was probably a very good approximation for

standard observables at LEP

• For tailored observables we find larger differences ≈ 20%

• Keeping CF to its Nc = 3 value (4/3) (as is done in standard

showers), rather than 3/2, tends to improve the approximation

(TR = 1/2)

• At the LHC we have many more colored particles, so (many

more)2 possible color suppressed interference terms

• For full evolution we should include color rearranging virtual

corrections, they do have the same IR singularity structure
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The color space

• For given external particles, the color space is a finite

dimensional vector space equipped with a scalar product

〈A, B〉 =
∑

a,b,c,...

Aa,b,c,...(Ba,b,c,...)
∗

Example: If

A = (tg)a
b(t

g)c
d = a

b

c

d

,

then 〈A|A〉 =
∑

a,b,c,d,g,f (tg)a
b(t

g)c
d(t

h)b
a(th)d

c

• We may use any basis
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A basis for the color space

• In general an amplitude can be written as linear combination of

different color structures, like

A + +B ...

• This is the kind of ”trace” bases used in our current parton

shower, and most NLO calculations
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It has some nice properties

• The effect of gluon emission is easily described:

g g g g g g g1 2 3 1 2 4 3

− = −>

g g g g1 2 4 3 g g g g1 4 2 3

(Z. Nagy & D. Soper, JHEP 0807 (2008) 025)

• So is the effect of gluon exchange:

= TR( − +

g1 g2 g3 g4 g1 g2 g3 g4 g2 g3 g1 g4

Convention: + when inserting after, - when inserting before

)

g1 g2 g3 g4

(M. Sjödahl, JHEP 0909 (2009) 087 JHEP)
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ColorFull

For the purpose of treating a general QCD color structure I have

written a C++ color algebra code, ColorFull, which:

• automatically creates a ”trace” basis for any number and kind

of partons, and to any order in αs

• describes the effect of gluon emission

• ... and gluon exchange

• squares color amplitudes

• can be used with boost for optimized calculations

• is planned to be published separately
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But...

• this type of basis is non-orthogonal and overcomplete

(for more than a few partons)

• ... and the number of basis vectors grows as a factorial in Ng

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond qq + 7 gluons
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But...

• this type of basis is non-orthogonal and overcomplete

(for more than a few partons)

• ... and the number of basis vectors grows as a factorial in Ng

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond qq + 7 gluons

• Would be nice with minimal orthogonal basis
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Minimal orthogonal bases for the color
spaces

In collaboration with Stefan Keppeler

• Want orthogonal minimal basis for color space

• Basis vectors can be enumerated using Young tableaux
multiplication

⊗ =
(0) + ⊕ ⊕ ⊕ ⊕ ⊕ 0

1 8 8 10 10 27 0

and constructed if projection operators are known

• The problem is the construction of the corresponding projection

operators; the Young-tableaux operate with ”quark-units” but

the physical particles include anti-quarks and gluons
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• New idea: Iteratively build up gluon projection operators using

quark and anti-quark projection operators and project out

already known projection operators

• We have found a general strategy for constructing gluon

projection operators for ng → ng gluons!

• This can be used for constructing orthogonal bases for up to

2ng + 1 gluons or qq-pairs!

• We have explicitly constructed the 51 3g → 3g projection

operators for any Nc

• ... and the 6 gluon orthonormal bases

• ... and orthonormal bases for all other 6 parton cases

• Bases can easily be made minimal by crossing out states that

are disallowed for Nc = 3
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Number of projection operators and
basis vectors

Number of projection operators and basis vectors for Ng → Ng

gluons without imposing projection operators and vectors to appear

in charge conjugation invariant combinations

Case Projectors Nc = 3 Projectors Nc = ∞ Vectors Nc = 3 Vectors Nc = ∞

2g → 2g 6 7 8 9

3g → 3g 29 51 145 265

4g → 4g 166 513 3 598 14 833

5g → 5g 1 002 6 345 107 160 1 334 961
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Conclusions for the color space

• We have outlined a general recipe for construction of minimal

orthogonal multiplet based bases for any QCD process

• On the way we found an Nc-independent labeling of the

multiplets in g⊗ng , and a one to one, or one to zero,

correspondence between these for various Nc

• ... and an Nc independent way of obtaining SU(Nc)

Clebsch-Gordan matrices

• Number of basis vectors grows only exponentially for Nc = 3

• This has the potential to very significantly speed up exact

calculations in the color space of SU(Nc)
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...and outlook

• However, in order to use this in an optimized way, we need to

understand how to sort QCD amplitudes in this basis in an

efficient way

• ...also, a lot of implementational work remains
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...and outlook

• However, in order to use this in an optimized way, we need to

understand how to sort QCD amplitudes in this basis in an

efficient way

• ...also, a lot of implementational work remains

Thank you for your attention
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Backup: The Sudakov decomposition

In each splitting a parton ĩj splits into i and j whereas a spectator k̃

takes up the longitudinal recoil

pi = zpĩj +
p2
⊥

zsijk

pk̃ + k⊥ (1)

pj = (1 − z)pĩj +
p2
⊥

(1 − z)sijk

pk̃ − k⊥ (2)

pk =

(

1 −
p2
⊥

z(1 − z)sijk

)

pk̃ , (3)

with p2
ĩj

= p2

k̃
= 0, a space like transverse momentum k⊥ with

k2
⊥ = −p2

⊥ and k⊥ · pĩj = k⊥ · pk̃ = 0. With this parametrization we

also have sijk = (pi + pj + pk)2 = (pĩj + pk̃)2.
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Backup: Thrust

For standard observables small effects, here thrust T = maxn

∑
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Backup: Importance of g → qq splitting
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Backup: Jet separation
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Backup: Nc suppressed terms

That non-leading color terms are suppressed by 1/N2
c , is guaranteed

only for same order αs diagrams with only gluons (’t Hooft 1973)

2

= =
1__
2

=
1__
2

=
1__
2

CF =
1
__
2

CF N =
N −1

2
N____

2N

1__
2

~ N
2

*

= =

1
__
2

−
1
__

2N
=

= −
1__

2N

CF N = −
1__

2

N −1
2

____

2N
~ N
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Backup: Nc suppressed terms

For a parton shower there may also be terms which only are

suppressed by one power of Nc

*

= =

− __=

Was 0 before emission, now ~N
c

2 Was ~N
c
 before emission, now ~N

c
2

"Included" in showers,did not enter shower in any form,

genuine "shower" contribution contribution from hard process

The leading Nc contribution scales as N2
c before emission and N3

c

after
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Backup: A dipole shower in the ”trace”
basis

• A dipole shower can easily be thought of in the language of the

Nc → ∞ limit of the ”trace” basis

i

j

k

Coherent from i,j

Coherent from j,k

No coherent emision from i,k

• Also, it is easy to see that in this limit only ”color neighbors”

radiate, i.e. only neighboring partons on the quark-lines in the

basis radiate → trace basis well suited for comparing to parton

showers
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Backup: Gluon exchange
A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
Nc

+
canceling N  −
suppressed
terms

c

+
canceling N  −
suppressed
terms

c

Fierz

Fierz

2 2

1

2

1

2
__

_
2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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Backup: The size of the vector space
and the trace basis

• For general Nc the trace type bases size grows as a factorial

Nvec[nq, Ng] = Nvec[nq, Ng − 1](Ng − 1 + nq) + Nvec[nq, Ng − 2](Ng − 1)

where

Nvec[nq, 0] = nq!

Nvec[nq, 1] = nqnq!

• The size of the vector spaces for finite Nc asymptotically grows

as an exponential in the number of gluons/qq-pairs.
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Backup: Some example projectors

P
8a,8a
g1 g2 g3 g4 g5 g6

=
1

T 2
R

1

4N2
c

ifg1 g2 i1ifi1 g3 i2ifg4 g5 i3ifi3 g6 i2

P
8s,27
g1 g2 g3 g4 g5 g6

=
1

TR

Nc

2(N2
c − 4)

dg1 g2 i1P
27
i1 g3 i2 g6

di2 g4 g5

P
27,8
g1 g2 g3 g4 g5 g6

=
4(Nc + 1)

N2
c (Nc + 3)

P
27
g1 g2 i1 g3

P
27
i1 g6 g4 g5

P
27,64=c111c111
g1 g2 g3 g4 g5 g6

=
1

T 3
R

T
27,64
g1 g2 g3 g4 g5 g6

−
N2

c

162(Nc + 1)(Nc + 2)
P

27,8
g1 g2 g3 g4 g5 g6

−
N2

c − Nc − 2

81Nc (Nc + 2)
P

27,27s
g1 g2 g3 g4 g5 g6
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Backup: Three gluon multiplets

SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

((45)8s6)1 2 × ((45)8s6)8s or a ((45)8s6)10 ((45)8s6)10 ((45)8s6)27 ((45)8s6)0

((45)8a6)1 2 × ((45)8a6)8s or a ((45)8a6)10 ((45)8a6)10 ((45)8a6)27 ((45)8a6)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)276)8 ((45)276)10 ((45)276)10 ((45)276)27 ((45)06)0

((45)06)8 ((45)06)10 ((45)06)10 ((45)276)27 ((45)06)0

SU(3) dim 64 35 35 0

Multiplet c111c111 c111c21 c21c111 c21c21

((45)276)64 ((45)106)35 ((45)106)35 ((45)106)c21c21

((45)276)35 ((45)276)35 ((45)106)c21c21

((45)276)c21c21

((45)06)c21c21

SU(3) dim 0 0 0 0 0

Multiplet c111c3 c3c111 c21c3 c3c21 c3c3

((45)106)c111c3 ((45)106)c3c111 ((45)106)c21c3 ((45)106)c3c21 ((45)06)c3c3

((45)06)c21c3 ((45)06)c3c21
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Backup: SU(Nc) multiplets

• We find that the irreducible spaces in g⊗ng for varying Nc stand

in a one to one, or one to zero correspondence to each other!

(For each SU(3) multiplet there is an SU(5) version, but not

vice versa)

• Every multiplet in g⊗ng can be labeled in an Nc-independent
way using the lengths of the columns. For example

N
c
-1

1 N
c
-1

1 N
c

N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2

⊗ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ◦

8 8 1 8 8 10 10 27 0

(4)

I have not seen this anywhere else.. have you?
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