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Motivation

• With the start of the LHC follows an increased demand of

accurately calculated processes in QCD

• This is applicable to NLO calculations and resummation

• ...but my perspective is from a parton shower point of view

• First SU(3) parton shower in collaboration with Simon Plätzer

JHEP 07(2012)042

• Color structure treated using my ColorFull code
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The color space

• We never observe individual colors → we are only interested in

color summed quantities

• For given external partons, the color space is a finite dimensional

vector space equipped with a scalar product

< A,B >=
∑

a,b,c,...

Aa,b,c,...(Ba,b,c,...)
∗

Example: If

A = (tg)a b(t
g)c d = a

b

c

d

,

then < A|A >=
∑

a,b,c,d,g,f (t
g)a b(t

g)c d(t
h)b a(t

h)d c

• We may use any basis (spanning set)
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The standard treatment
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2
s(g

αδgβγ
− gαγgβδ)

a, α b, β

c, γ d, δ
×ig2

s(g
αβgγδ

− gαδgβγ) ×ig2
s(g

αβgγδ
− gαγgβδ)

(read counter clockwise)

• Every 3g vertex can be replaced using:

= 1
TR

(

i fa b c

a

b c

− )

• After this every internal gluon can be removed using:

= TR −
TR

Nc
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• This can be applied to any QCD amplitude, tree level or beyond

• For gluons at tree level, the result is a sum over traces

A =
∑

σ∈SNg−1

AσTr[t
1tσ(2)...tσ(Ng)] =

∑

σ∈SNg−1

Aσ
...

1 σ(2) σ(Ng)

,

• At one loop we may have a product of up to two traces, and for

arbitrary order up to Ng/2 traces

• For processes with quarks there are open quark lines as well:

For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)
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• In general an amplitude can be written as linear combination of

different color structures, like

A + +B ...

• This is the kind of “trace bases” used in the parton shower with

Simon Plätzer, and in most NLO calculations
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It has some nice properties

• The effect of gluon emission is easily described:

g g g g g g g1 2 3 1 2 4 3

− = −>

g g g g1 2 4 3 g g g g1 4 2 3

(Z. Nagy & D. Soper, JHEP 0807 (2008) 025)

• So is the effect of gluon exchange:

= TR( − +

g1 g2 g3 g4 g1 g2 g3 g4 g2 g3 g1 g4

Convention: + when inserting after, - when inserting before

)

g1 g2 g3 g4

(M. Sjödahl, JHEP 0909 (2009) 087 JHEP)
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ColorFull

For the purpose of treating a general QCD color structure I have

written a C++ color algebra code, ColorFull, which:

• Is used in the color shower with Simon Plätzer

• automatically creates a “trace basis” for any number and kind

of partons, and to any order in αs

• describes the effect of gluon emission

• ... and gluon exchange

• squares color amplitudes

• can be used with boost for optimized calculations

• is planned to be published separately
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However...

• this type of basis is non-orthogonal and overcomplete

(for more than Nc gluons plus qq-pairs)

• ... and the number of basis vectors grows as a factorial in Ng

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond qq + 7 gluons
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However...

• this type of basis is non-orthogonal and overcomplete

(for more than Nc gluons plus qq-pairs)

• ... and the number of basis vectors grows as a factorial in Ng

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond qq + 7 gluons

• Would be nice with minimal orthogonal basis
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Orthogonal multiplet bases

In collaboration with Stefan Keppeler

• The color space may be decomposed into irreducible

representations, enumerated using Young tableaux multiplication

• For example for qq → qq we have

⊗ = ⊕

3 3 6 3

and the corresponding basis vectors

= 1
2 + 1

2
,

= 1
2 −

1
2

Here Cvitanović’s birdtrack notation is used. These color tensors

are orthogonal both when seen as qq-projectors, and when seen

as basis vectors on the 4-parton space
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• In fact the qq → qq color space is the same as for qq → qq,

⊗ = • ⊕

and we could as well have used the basis:

V
1 = δa bδ

c
d = a

c

b d

, V
8 = (tg)a b(t

g)c d = a

b

c

d

• In general we may “comb” the involved particles as incoming

and outgoing as we wish

• For quarks we can construct orthogonal projectors and basis

vectors using Young tableaux ...at least from the Hermitian

quark projectors

• In QCD we have both quarks, anti-quarks and gluons

→ No obvious way to construct projectors
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The simplest gluon example, gg → gg

• Basis vectors can be enumerated using Young tableaux
multiplication

⊗ =
(0) + ⊕ ⊕ ⊕ ⊕ ⊕ 0

1 8 8 10 10 27 0

• As color is conserved an incoming multiplet of a certain kind can

only go to an outgoing multiplet of the same kind,

1 → 1, 8 → 8...

Charge conjugation implies that some vectors only occur

together...
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The problem is the construction of the corresponding projection

operators; the Young tableaux operate with “quark-units”

• Problem first solved for two gluons by MacFarlane, Sudbery, and

Weisz 1968, however only for Nc = 3

• General Nc solution for two gluons by Cvitanović (in group

theory books, 1984 and 2008), using polynomial equations

• General Nc solution for two gluons by Dokshitzer and

Marchesini (2006), using symmetries and intelligent guesswork
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P
1 =

1

N2
c − 1

, P
8s =

Nc

2TR(N2
c − 4)

, P
8a =

1

2NcTR

,

P
10 =

1

2
+

1

2T 2
R

−
1

2
P

8a

P
10 =

1

2
−

1

2T 2
R

−
1

2
P

8a

P
27 =

1

2
+

1

2T 2
R

−
Nc − 2

2Nc

P
8s −

Nc − 1

2Nc

P
1

P
0 =

1

2
−

1

2T 2
R

−
Nc + 2

2Nc

P
8s −

Nc + 1

2Nc

P
1
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• For two gluons, there are two octet projectors, one singlet

projector, and 4 new projectors, 10, 10, 27, and for general Nc,

“0”

• It turns out that the new projectors can be seen as corresponding

to different symmetries w.r.t. quark and anti-quark units, for

example the decuplet can be seen as corresponding to

− (singlet and) octets

1 2

1

2

− (singlet and) octets

=

Similarly the anti-decuplet corresponds to 1
2

⊗ 1 2 , the 27-plet

corresponds to 1 2 ⊗ 1 2 and the 0-plet to 1
2

⊗
1
2
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New idea: Could this work in general?

On the one hand side

g1 ⊗ g2 ⊗ ....⊗ gn ⊆ (q1 ⊗ q̄1)⊗ (q2 ⊗ q̄2)⊗ ...⊗ (qn ⊗ q̄n)

so there is hope...

On the other hand...

• Why should it?

• How could it be uniquely identified? In general there are many

instances of a multiplet, how do we know we construct all?

• Even if such a decomposition would give the new multiplets

(which could not be present for fewer gluons) in a unique way,

we would have to project out all instances of all “old”

multiplets. How do we get them?
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Key observation:

• Starting in a given multiplet, corresponding to some qq

symmetries, such as 27, from 1 2 ⊗ 1 2 , it turns out that for each

way of attaching a quark box to 1 2 and an anti-quark box to

1 2 , to there is at most one new multiplet! For example, the

projector P27,35 can be seen as coming from

P
27

P
27

1 2 3

1 2
3

g1

g2

g3

g4

g5

g6

after having projected out ”old” multiplets

• In fact, for large enough Nc, there is precisely one new multiplet

for each set of qq symmetries
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It turns out that the proof of this is really interesting:

• We find that the irreducible spaces in g⊗ng for varying Nc stand

in a one to one, or one to zero correspondence to each other!

(For each SU(3) multiplet there is an SU(5) version, but not

vice versa.)

• Every multiplet in g⊗ng can be labeled in an Nc-independent
way using the lengths of the columns. For example

N
c
-1

1 N
c
-1

1 N
c

N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2

⊗ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ◦

8 8 1 8 8 10 10 27 0

I have not seen this anywhere else... have you?
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Projecting out ”old” multiplets
This would give us a way of constructing all projectors corresponding

to ”new” multiplets, if we knew how to project out all old multiplets.

In g1 ⊗ g2 ⊗ g3, there are many 27-plets. How do we separate the

various instance of the same multiplet?
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Projecting out ”old” multiplets
This would give us a way of constructing all projectors corresponding

to ”new” multiplets, if we knew how to project out all old multiplets.

In g1 ⊗ g2 ⊗ g3, there are many 27-plets. How do we separate the

various instance of the same multiplet?

• By the construction history!

PM2
PM3

PMng
PM3

PM2

... ... ... ...

. . . . . .

. . .

. . .

. . .

. . .

We make sure that the ng − ν first gluons are in a given

multiplet! Then the various instances are orthogonal as, at some

point, in the construction history, there was a different projector!

(More complicated for multiple occurrences...)
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• In this way we have constructed the projection operators onto

irreducible subspaces for 3g → 3g

• There are 51 of them, reducing to 29 for SU(3)

• From these we have constructed an orthogonal (normalized)

basis for the 6g space, by letting any instance of a given

multiplet go to any other instance of the same multiplet. For

general Nc there are 265 basis vectors. Crossing out tensors that

do not appear for Nc = 3, we get a minimal basis with 145 basis

vectors.

There’s also a reduction from charge conjugation
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Number of projection operators and
basis vectors

Number of projection operators and basis vectors for Ng → Ng

gluons without imposing projection operators and vectors to appear

in charge conjugation invariant combinations

Case Projectors Nc = 3 Projectors Nc = ∞ Vectors Nc = 3 Vectors Nc = ∞

2g → 2g 6 7 8 9

3g → 3g 29 51 145 265

4g → 4g 166 513 3 598 14 833

5g → 5g 1 002 6 345 107 160 1 334 961
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• The size of the vector spaces asymptotically grows as an

exponential in the number of gluons/qq-pairs for finite Nc

• For general Nc the basis size grows as a factorial

Nvec[nq, Ng] = Nvec[nq, Ng − 1](Ng − 1 + nq) +Nvec[nq, Ng − 2](Ng − 1)

where

Nvec[nq, 0] = nq!

Nvec[nq, 1] = nqnq!

As the multiplet basis also is orthogonal it has the potential to very

significantly speed up exact calculations in QCD!
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Processes with quarks

• We can also construct bases for processes with quarks using the

gluon projection operators. To see this we note that a qq-pair

may either be in an octet – in which case we may replace it with

a gluon, or in a singlet – in which case we enforce this and use

the gluon basis for one less gluon

• In general, having the ng → ng projectors we can easily get the

bases for up to 2ng + 1 gluons plus qq pairs

• Knowing how to construct the gluon projection operators in

general, we thus know how to construct the basis vectors for any

number and kind of partons and any order in perturbation

theory!

Malin Sjödahl 23



Conclusions for the color space
• We have outlined a general recipe for construction of minimal

orthogonal multiplet based bases for any QCD process,

arXiv:1207.0609

• On the way we found an Nc-independent labeling of the

multiplets in g⊗ng , and a one to one, or one to zero,

correspondence between these for various Nc

• ... and an Nc independent way of obtaining SU(Nc)

Clebsch-Gordan matrices

• Number of basis vectors grows only exponentially for Nc = 3

• This has the potential to very significantly speed up exact

calculations in the color space of SU(Nc)
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...and outlook

• However, in order to use this in an optimized way, we need to

understand how to sort QCD amplitudes in this basis in an

efficient way

• ...also, a lot of implementational work remains
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SU(3) parton showers

In collaboration with Simon Plätzer, arXiv:1207.0609

• Wisdom from LEP is that parton showers seem to do well with

the leading Nc approximation

• At LHC much more energy is available

→ many more colored partons

→ ”many more squared” color suppressed terms

• Often two quark-lines → importance of terms suppressed by

1/Nc rather than 1/N2
c should grow

• Also useful for exact NLO matching
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Basics of our shower
• Built on the Catani-Seymour dipole factorization

(S.Plätzer & S. Gieseke, JHEP 1101, 024 (2011) & 1109.6256)

• Parton ĩj splitting to partons i and j, and parton k̃ absorbs the

longitudinal recoil such that all partons remain on shell

|Mn+1(..., pi, ..., pj , ..., pk, ...)|
2 ≈

∑

k 6=i,j

1

2pi · pj
〈Mn(..., pĩj , ..., pk̃, ...)|Vij,k(pi, pj , pk)|Mn(..., pĩj , ..., pk̃, ...)〉

• In a standard parton shower parton ĩj and k̃ would have to be

”color connected”,

Vij,k = −8παsVij,k

Tĩj ·Tk̃

T2

ĩj

→ 8παs

Vij,k

1 + δĩj
δ(ĩj, k̃ color connected)

we keep all pairs (δĩj = 1 for gluon, 0 else, T2
ĩj

is a convention)
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For the emission probability this means that:

dPij,k(p
2
⊥, z) = Vij,k(p

2
⊥, z)

dφn+1(p
2
⊥, z)

dφn

×
−1

T2
ĩj

〈Mn|Tĩj ·Tk̃|Mn〉

|Mn|2

rather than

dPij,k(p
2
⊥, z) = Vij,k(p

2
⊥, z)

dφn+1(p
2
⊥, z)

dφn

×
δ(ĩj, k̃ color connected)

1 + δĩj

The splitting kernels read:

Vqg,k(pi, pj , pk) = CF

(

2(1− z)

(1− z)2 + p2⊥/sijk
− (1 + z)

)

Vgg,k(pi, pj , pk) = 2CA

(

1− z

(1− z)2 + p2⊥/sijk
+

z

z2 + p2⊥/sijk
− 2 + z(1− z)

)

Malin Sjödahl 28



Challenges

Three major new challenges

• Keeping track of the color structure for an arbitrary number of

partons

• Negative contributions to radiation probability, ”negative

splitting kernels”, treated using interleaved veto/competition

algorithm (S. Plätzer & M. Sjodahl, EPJ Plus 127 (2012) 26)

• Evolution with amplitude information (next)
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Evolution with amplitude information

• Assume we have a basis (or any spanning set) for the color space

|Mn〉 =

dn
∑

α=1

cn,α|αn〉 ↔ Mn = (cn,1, ..., cn,dn
)T

• |Mn〉 is known for the hard process

• How do we get |Mn+1〉 after emission?

Malin Sjödahl 30



• Observe that

|Mn|
2 = M†

nSnMn = Tr
(

Sn ×MnM
†
n

)

where Sn is the color scalar product matrix and

〈Mn|Tĩj ·Tk̃|Mn〉 = Tr
(

Sn+1 × Tk̃,nMnM
†
nT

†

ĩj,n

)

• Use an ”amplitude matrix” Mn = MnM
†
n as basic object

Mn+1 = −
∑

i 6=j

∑

k 6=i,j

4παs

pi · pj

Vij,k(pi, pj , pk)

T2
ĩj

Tk̃,nMnT
†

ĩj,n

where

Mhard = MhardM
†

hard
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Our current implementation

A proof of concept:

• e+e− → jets, a LEP-like setting

• Fixed αs= 0.112

• Up to 6 gluons, only gluon emission, g → qq is suppressed

anyway, and there is no non-trivial color structure

• No hadronization, we don’t want to spoil our Nc = 3 parton

shower by attaching an Nc → ∞ hadronization model. Also,

comparing showers in a fair way, would require retuning the

hadronized Nc = 3 shower

• No ”virtual”corrections, i.e. no color rearrangement without

radiation, no Coulomb gluons
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Three different treatments of color space

• Full, exact SU(3) treatment, all color correlations

• Shower, resembles standard showers, CF for gluon emission off

quarks is exact but non-trivial color suppressed terms are

dropped

• Strict large-Nc, all Nc suppressed terms dropped,

CF = 4/3 → 3/2 (TR = 1/2)
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Results: Number of emissions
First, simply consider the number of emissions

0.01

0.1

1

number of emissions

DipoleShower + ColorFull

0.6
0.8

1
1.2
1.4

1 2 3 4 5 6

nemissions

full
shower

strict large-Nc

ev
en

t
fr

ac
ti

on
x
/f

u
ll

... this is not an observable, but it is a genuine uncertainty on the

number of emissions in the perturbative part of a parton shower
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Results: Thrust

For standard observables small effects, here thrust T = maxn

∑

i
|pi·n|

∑

i
|pi|

0.0001

0.001

0.01

0.1

1

10

100

Thrust, τ = 1 − T

DipoleShower + ColorFull

0.8
0.9

1
1.1
1.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

τ

full
shower

strict large-Nc

N
−

1
d
N

/d
τ

x
/f

u
ll

Malin Sjödahl 35



Results: Angular distribution
Cosine of angle between third and fourth jet

0

0.2

0.4

0.6

0.8

1

Angle between softest jets

DipoleShower + ColorFull

0.8
0.9

1
1.1
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N
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1
d
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s
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3
4

x
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u
ll
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Results: Some tailored observables
For tailored observables we find larger differences

0.001

0.01

0.1

1

average transverse momentum w.r.t. ~n3

DipoleShower + ColorFull

0.8
0.9

1
1.1
1.2

1 10
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shower

strict large-Nc

G
eV

N
−

1
d
N

/d
〈p

⊥
〉

x
/f

u
ll

0.1

1

average rapidity w.r.t. ~n3

DipoleShower + ColorFull
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〈y〉
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1
d
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x
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u
ll

Average transverse momentum and rapidity of softer particles with

respect to the thrust axis defined by the three hardest partons
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Results: Importance of g → qq splitting
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Influence on average transverse momentum and rapidity w.r.t. the

thrust axis defined by the three hardest patrons from qq-splitting.
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Nc-suppressed terms
That non-leading color terms are suppressed by 1/N2

c , is guaranteed

only for same order αs diagrams with only gluons (’t Hooft 1973)

2

= =
1__
2

=
1__
2

=
1__
2

CF =
1
__
2

CF N =
N −1

2
N____

2N

1__
2

~ N
2

*

= =

1
__
2

−
1
__

2N
=

= −
1__

2N

CF N = −
1__

2

N −1
2

____

2N
~ N
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Nc-suppressed terms

For a parton shower there may also be terms which only are

suppressed by one power of Nc

*

= =

− __=

Was 0 before emission, now ~N
c

2 Was ~N
c
 before emission, now ~N

c
2

"Included" in showers,did not enter shower in any form,

genuine "shower" contribution contribution from hard process

The leading Nc contribution scales as N2
c before emission and N3

c

after
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Parton shower conclusions

• For standard observables we find small deviations for LEP, of

order a few percent

• Leading Nc was probably a very good approximation for

standard observables at LEP

• For tailored observables we find larger differences ≈ 20%

• Keeping CF to its Nc = 3 value (4/3) (as in standard showers),

rather than 3/2, tends to improve the approximation (TR = 1/2)

• At the LHC we have many more colored particles, so (many

more)2 possible color suppressed interference terms and 1/Nc

suppressed terms

• For full evolution we should include color rearranging virtual

corrections, they do have the same IR singularity structure
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Backup: The Sudakov decomposition

In each splitting a parton ĩj splits into i and j whereas a spectator k̃

takes up the longitudinal recoil

pi = zpĩj +
p2⊥
zsijk

pk̃ + k⊥ (2)

pj = (1− z)pĩj +
p2⊥

(1− z)sijk
pk̃ − k⊥ (3)

pk =

(

1−
p2⊥

z(1− z)sijk

)

pk̃ , (4)

with p2
ĩj
= p2

k̃
= 0, a space like transverse momentum k⊥ with

k2⊥ = −p2⊥ and k⊥ · pĩj = k⊥ · pk̃ = 0. With this parametrization we

also have sijk = (pi + pj + pk)
2 = (pĩj + pk̃)

2.
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Backup: Thrust

For standard observables small effects, here thrust T = maxn

∑

i
|pi·n|

∑

i
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Backup: Jet separation
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Backup: A dipole shower in the ”trace”
basis

• A dipole shower can easily be thought of in the language of the

Nc → ∞ limit of the ”trace” basis

i

j

k

Coherent from i,j

Coherent from j,k

No coherent emision from i,k

• Also, it is easy to see that in this limit only ”color neighbors”

radiate, i.e. only neighboring partons on the quark-lines in the

basis radiate → trace basis well suited for comparing to parton

showers
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Backup: Gluon exchange
A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
Nc

+
canceling N  −
suppressed
terms

c

+
canceling N  −
suppressed
terms

c

Fierz

Fierz

2 2

1

2

1

2
__

_
2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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Backup: Some example projectors

P
8a,8a
g1 g2 g3 g4 g5 g6

=
1

T 2
R

1

4N2
c

ifg1 g2 i1ifi1 g3 i2ifg4 g5 i3ifi3 g6 i2

P
8s,27
g1 g2 g3 g4 g5 g6

=
1

TR

Nc

2(N2
c − 4)

dg1 g2 i1P
27
i1 g3 i2 g6

di2 g4 g5

P
27,8
g1 g2 g3 g4 g5 g6

=
4(Nc + 1)

N2
c (Nc + 3)

P
27
g1 g2 i1 g3

P
27
i1 g6 g4 g5

P
27,64=c111c111
g1 g2 g3 g4 g5 g6

=
1

T 3
R

T
27,64
g1 g2 g3 g4 g5 g6

−
N2

c

162(Nc + 1)(Nc + 2)
P

27,8
g1 g2 g3 g4 g5 g6

−
N2

c −Nc − 2

81Nc (Nc + 2)
P

27,27s
g1 g2 g3 g4 g5 g6
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Backup: Three gluon multiplets

SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

((45)8s6)1 2 × ((45)8s6)8s or a ((45)8s6)10 ((45)8s6)10 ((45)8s6)27 ((45)8s6)0

((45)8a6)1 2 × ((45)8a6)8s or a ((45)8a6)10 ((45)8a6)10 ((45)8a6)27 ((45)8a6)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)276)8 ((45)276)10 ((45)276)10 ((45)276)27 ((45)06)0

((45)06)8 ((45)06)10 ((45)06)10 ((45)276)27 ((45)06)0

SU(3) dim 64 35 35 0

Multiplet c111c111 c111c21 c21c111 c21c21

((45)276)64 ((45)106)35 ((45)106)35 ((45)106)c21c21

((45)276)35 ((45)276)35 ((45)106)c21c21

((45)276)c21c21

((45)06)c21c21

SU(3) dim 0 0 0 0 0

Multiplet c111c3 c3c111 c21c3 c3c21 c3c3

((45)106)c111c3 ((45)106)c3c111 ((45)106)c21c3 ((45)106)c3c21 ((45)06)c3c3

((45)06)c21c3 ((45)06)c3c21
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The importance of Hermitian projectors

P
6,8
Y = 4

3 , P
6,8
Y = 4

3

P
3,8
Y = 4

3 , P
3,8 = 4

3

The standard Young projection operators P6,8
Y and P

3,8
Y compared to

their hermitian versions P6,8 and P
3,8.

Clearly P
6,8†

P
3,8 = P

6,8
P

3,8 = 0. However, as can be seen from

the symmetries, P6,8†
Y P

3,8
Y 6= 0.
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Backup: First occurrence

nf 0 1 2 3

SU(3) • =

Young diagrams

Table 1: Examples of SU(3) Young diagrams sorted according to their

first occurrence nf .
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