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Motivation

• With the start of the LHC follows an increased demand of

accurately calculated processes in QCD

• This is applicable to NLO calculations and resummation

• ...but my perspective is from a parton shower point of view

• First SU(3) parton shower in collaboration with Simon Plätzer

JHEP 07(2012)042, color structure treated using my C++

ColorFull code
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The color space

• We never observe individual colors → we are only interested in

color summed quantities

• For given external partons, the color space is a finite dimensional

vector space equipped with a scalar product

< A,B >=
∑

a,b,c,...

Aa,b,c,...(Ba,b,c,...)
∗

Example: If

A =
∑

g

(tg)a b(t
g)c d =

∑

g

a

b

c

dg
,

then < A|A >=
∑

a,b,c,d,g,h(t
g)a b(t

g)c d(t
h)b a(t

h)d c

• We may use any basis (spanning set)
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The standard treatment
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2
s(g

αδgβγ
− gαγgβδ)

a, α b, β

c, γ d, δ
×ig2

s(g
αβgγδ

− gαδgβγ) ×ig2
s(g

αβgγδ
− gαγgβδ)

(read counter clockwise)

• Every 3g vertex can be replaced using:

= 1
TR

(

i fa b c

a

b c

− )

• After this every internal gluon can be removed using:

= TR −
TR

Nc
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• This can be applied to any QCD amplitude, tree level or beyond

• For gluons at tree level, the result is a sum over closed

quark-lines

A =
∑

σ∈SNg−1

Aσ
...

1 σ(2) σ(Ng)

=
∑

σ∈SNg−1

AσTr[t
1tσ(2)...tσ(Ng)]

• At one loop we may have a product of up to two traces, and for

arbitrary order up to Ng/2 traces

• For processes with quarks there are open quark lines as well:

For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)
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• In general an amplitude can be written as linear combination of

different color structures, like

A + +B ...

• This is the kind of “trace bases” used in ColorFull for the SU(3)

parton shower, and in most NLO calculations
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It has some nice properties

• The effect of gluon emission is easily described:

Convention: + when inserting after, minus when inserting before.

= −→

(Z. Nagy & D. Soper, JHEP 0807 (2008) 025)

• So is the effect of gluon exchange:

= TR( − +

g1 g2 g3 g4 g1 g2 g3 g4 g2 g3 g1 g4

Convention: + when inserting after, - when inserting before

)

g1 g2 g3 g4

(M. Sjödahl, JHEP 0909 (2009) 087 JHEP)

Malin Sjödahl 7



ColorFull

For the purpose of treating a general QCD color structure I have

written a C++ color algebra code, ColorFull, which:

• Is used in the color shower with Simon Plätzer

• automatically creates a “trace basis” for any number and kind

of partons, and to any order in αs

• describes the effect of gluon emission

• ... and gluon exchange

• squares color amplitudes

• can be used with boost for optimized calculations

• is planned to be published separately
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However...

• This type of “basis” is non-orthogonal and overcomplete

(for more than Nc gluons plus qq-pairs)

• ... and the number of basis vectors grows as a factorial in

Ng +Nqq

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond ∼ 8 gluons plus qq-pairs
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However...

• This type of “basis” is non-orthogonal and overcomplete

(for more than Nc gluons plus qq-pairs)

• ... and the number of basis vectors grows as a factorial in

Ng +Nqq

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond ∼ 8 gluons plus qq-pairs

• Would be nice with minimal orthogonal basis
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Orthogonal multiplet bases

In collaboration with Stefan Keppeler

• The color space may be decomposed into irreducible

representations, enumerated using Young tableaux multiplication

• For example for qq → qq we have

⊗ = ⊕

3 3 6 3

and the corresponding basis vectors

= 1
2 + 1

2
,

= 1
2 −

1
2

Here Cvitanović’s birdtrack notation is used. These color tensors

are orthogonal both when seen as qq-projectors, and when seen

as basis vectors on the 4-parton space
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• For quarks we can construct orthogonal projectors and basis

vectors using Young tableaux ...at least from the Hermitian

quark projectors

• In fact the qq → qq color space is the same as for qq → qq,

⊗ = • ⊕

and we could as well have used the basis:

V
1 = δa bδ

c
d = a

c

b d

, V
8 = (tg)a b(t

g)c d = a

b

c

d

• In general we may “comb” the involved particles as incoming

and outgoing as we wish

• In QCD we have quarks, anti-quarks and gluons

→ No obvious way to construct projectors
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The simplest gluon example, gg → gg

• Basis vectors can be enumerated using Young tableaux
multiplication

⊗ =
• ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 0

1 8 8 10 10 27 0

• As color is conserved an incoming multiplet of a certain kind can

only go to an outgoing multiplet of the same kind,

1 → 1, 8 → 8...

Charge conjugation implies that some vectors only occur

together...
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The problem is the construction of the corresponding projection

operators; the Young tableaux operate with “quark-units”

• Problem first solved for two gluons by MacFarlane, Sudbery, and

Weisz 1968, however only for Nc = 3

• General Nc solution for two gluons by Cvitanović (in group

theory books, 1984 and 2008), using polynomial equations

• General Nc solution for two gluons by Dokshitzer and

Marchesini (2006), using symmetries and intelligent guesswork
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• For two gluons, there are two octet projectors, one singlet

projector, and 4 new projectors, 10, 10, 27, and for general Nc,

“0”

• It turns out that the new projectors can be seen as corresponding

to different symmetries w.r.t. quark and anti-quark units, for

example the decuplet can be seen as corresponding to

− (singlet) and octet(s)

1 2

1

2

− (singlet) and octet(s)

=

Similarly the anti-decuplet corresponds to 1
2

⊗ 1 2 , the 27-plet

corresponds to 1 2 ⊗ 1 2 and the 0-plet to 1
2

⊗
1
2
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P
1 =

1

N2
c − 1

, P
8s =

Nc

2TR(N2
c − 4)

, P
8a =

1

2NcTR

,

P
10 =

1

2
+

1

2T 2

R

−

1

2
P

8a

P
10 =

1

2
−

1

2T 2

R

−

1

2
P

8a

P
27 =

1

2
+

1

2T 2

R

−

Nc − 2

2Nc

P
8s

−

Nc − 1

2Nc

P
1

P
0 =

1

2
−

1

2T 2

R

−

Nc + 2

2Nc

P
8s

−

Nc + 1

2Nc

P
1
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New idea: Could this work in general?

On the one hand side

g1 ⊗ g2 ⊗ ....⊗ gn ⊆ (q1 ⊗ q̄1)⊗ (q2 ⊗ q̄2)⊗ ...⊗ (qn ⊗ q̄n)

so there is hope...

On the other hand...

• Why should it?

• In general there are many instances of a multiplet, how do we

know we construct all?

• Even if such a decomposition would give the new multiplets

(which could not be present for fewer gluons) in a unique way,

we would have to project out all instances of all “old”

multiplets. How do we get them?
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Key observation:

• Starting in a given multiplet, corresponding to some qq

symmetries, such as 27, from 1 2 ⊗ 1 2 , it turns out that for each

way of attaching a quark box to 1 2 and an anti-quark box to

1 2 , to there is at most one new multiplet! For example, the

projector P27,35 can be seen as coming from

P
27

P
27

1 2 3

1 2
3

g1

g2

g3

g4

g5

g6

after having projected out ”old” multiplets

• In fact, for large enough Nc, there is precisely one new multiplet

for each set of qq symmetries

Malin Sjödahl 17



It turns out that the proof of this is really interesting:

• We find that the irreducible representations in g⊗ng for varying

Nc stand in a one to one, or one to zero correspondence to each

other! (For each SU(3) multiplet there is an SU(5) version, but

not vice versa.)

• Every multiplet in g⊗ng can be labeled in an Nc-independent
way using the lengths of the columns. For example

N
c
-1

1 N
c
-1

1 N
c

N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2

⊗ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ◦

8 8 1 8 8 10 10 27 0

I have not seen this column notation elsewhere... have you?
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Projecting out ”old” multiplets
This would give us a way of constructing all projectors corresponding

to ”new” multiplets, if we knew how to project out all old multiplets.

In g1 ⊗ g2 ⊗ g3, there are many 27-plets. How do we separate the

various instance of the same multiplet?
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Projecting out ”old” multiplets
This would give us a way of constructing all projectors corresponding

to ”new” multiplets, if we knew how to project out all old multiplets.

In g1 ⊗ g2 ⊗ g3, there are many 27-plets. How do we separate the

various instance of the same multiplet?

• By the construction history!

PM2
PM3

PMng
PM3

PM2

... ... ... ...

. . . . . .

. . .

. . .

. . .

. . .

We make sure that the ng − ν first gluons are in a given

multiplet! Then the various instances are orthogonal as, at some

point in the construction history, there was a different projector!

(More complicated for multiple occurrences...)
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The 3g multiplets from (anti-) decuplets
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The 3g multiplets from 27- and 0-plets
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• Construct projectors corresponding to “old” multiplets

• Construct the tensors which will give rise to “new” projectors

P
27

P
27

1 2 3

1 2
3

g1

g2

g3

g4

g5

g6

• From these, project out “old” multiplets
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• Calculations are done using a mathematica package, ColorMath

• Separate publication planned this autumn

• Intended to be an easy to use mathematica package for color

summed calculations in QCD, SU(Nc)

In[1]:= Get@"�data�Documents�Annatjobb�Color�Mathematica�ColorMathv5.m"D

In[2]:= Amplitude = T t8g<q1q3 t
8g<q4

q2 + S t
8g<q1

q2 t
8g<q4

q3;

In[3]:= Amplitude Conjugate@Amplitude �.g® g2D �� CSimplify �� Simplify

Out[3]=

I-1+Nc2M HConjugate@SD H-T+S NcL+Conjugate@TD H-S+T NcLL TF2

Nc
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• In this way we have constructed the projection operators onto

irreducible subspaces for 3g → 3g

• There are 51 projectors, reducing to 29 for SU(3)

• From these we have constructed an orthogonal (normalized)

basis for the 6g space, by letting any instance of a given

multiplet go to any other instance of the same multiplet. For

general Nc there are 265 basis vectors. Crossing out tensors that

do not appear for Nc = 3, we get a minimal basis with 145 basis

vectors.

There’s also a reduction from charge conjugation
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Number of projection operators and
basis vectors

In general, for many partons the size of the vector space is much

smaller for Nc = 3, compared to for Nc → ∞

Case Projectors Nc = 3 Projectors Nc = ∞ Vectors Nc = 3 Vectors Nc = ∞

2g → 2g 6 7 8 9

3g → 3g 29 51 145 265

4g → 4g 166 513 3 598 14 833

5g → 5g 1 002 6 345 107 160 1 334 961

Number of projection operators and basis vectors for Ng → Ng

gluons without imposing projection operators and vectors to appear

in charge conjugation invariant combinations
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• The size of the vector spaces asymptotically grows as an

exponential in the number of gluons/qq-pairs for finite Nc

• For general Nc the basis size grows as a factorial

Nvec[nq, Ng] = Nvec[nq, Ng − 1](Ng − 1 + nq) +Nvec[nq, Ng − 2](Ng − 1)

where

Nvec[nq, 0] = nq!

Nvec[nq, 1] = nqnq!

As the multiplet basis also is orthogonal it has the potential to very

significantly speed up exact calculations in QCD!
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Processes with quarks

• We can also construct bases for processes with quarks using the

gluon projection operators. To see this we note that a qq-pair

may either be in an octet – in which case we may replace it with

a gluon, or in a singlet – in which case we enforce this and use

the gluon basis for one less gluon

• In general, having the ng → ng projectors we can easily get the

bases for up to 2ng + 1 gluons plus qq pairs

• Knowing how to construct the gluon projection operators in

general, we thus know how to construct the basis vectors for any

number and kind of partons and any order in perturbation

theory!
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Conclusions

• We have outlined a general recipe for construction of minimal

orthogonal multiplet based bases for any QCD process,

arXiv:1207.0609

• On the way we found an Nc-independent labeling of the

multiplets in g⊗ng , and a one to one, or one to zero,

correspondence between these for various Nc

• Number of basis vectors grows only exponentially for Nc = 3

• This has the potential to very significantly speed up exact

calculations in the color space of SU(Nc)
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...and outlook

• However, in order to use this in an optimized way, we need to

understand how to sort QCD amplitudes in this basis in an

efficient way

• ...also, a lot of implementational work remains
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Backup: Some example projectors

P
8a,8a
g1 g2 g3 g4 g5 g6

=
1

T 2
R

1

4N2
c

ifg1 g2 i1ifi1 g3 i2ifg4 g5 i3ifi3 g6 i2

P
8s,27
g1 g2 g3 g4 g5 g6

=
1

TR

Nc

2(N2
c − 4)

dg1 g2 i1P
27
i1 g3 i2 g6

di2 g4 g5

P
27,8
g1 g2 g3 g4 g5 g6

=
4(Nc + 1)

N2
c (Nc + 3)

P
27
g1 g2 i1 g3

P
27
i1 g6 g4 g5

P
27,64=c111c111
g1 g2 g3 g4 g5 g6

=
1

T 3
R

T
27,64
g1 g2 g3 g4 g5 g6

−
N2

c

162(Nc + 1)(Nc + 2)
P

27,8
g1 g2 g3 g4 g5 g6

−
N2

c −Nc − 2

81Nc (Nc + 2)
P

27,27s
g1 g2 g3 g4 g5 g6

Malin Sjödahl 30



Backup: Three gluon multiplets
SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

((45)8s6)1 2 × ((45)8s6)8s or a ((45)8s6)10 ((45)8s6)10 ((45)8s6)27 ((45)8s6)0

((45)8a6)1 2 × ((45)8a6)8s or a ((45)8a6)10 ((45)8a6)10 ((45)8a6)27 ((45)8a6)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)276)8 ((45)276)10 ((45)276)10 ((45)276)27 ((45)06)0

((45)06)8 ((45)06)10 ((45)06)10 ((45)276)27 ((45)06)0

SU(3) dim 64 35 35 0

Multiplet c111c111 c111c21 c21c111 c21c21

((45)276)64 ((45)106)35 ((45)106)35 ((45)106)c21c21

((45)276)35 ((45)276)35 ((45)106)c21c21

((45)276)c21c21

((45)06)c21c21

SU(3) dim 0 0 0 0 0

Multiplet c111c3 c3c111 c21c3 c3c21 c3c3

((45)106)c111c3 ((45)106)c3c111 ((45)106)c21c3 ((45)106)c3c21 ((45)06)c3c3

((45)06)c21c3 ((45)06)c3c21

Multiplets for g4 ⊗ g5 ⊗ g6
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The importance of Hermitian projectors

P
6,8
Y = 4

3 , P
6,8
Y = 4

3

P
3,8
Y = 4

3 , P
3,8 = 4

3

The standard Young projection operators P6,8
Y and P

3,8
Y compared to

their hermitian versions P6,8 and P
3,8.

Clearly P
6,8†

P
3,8 = P

6,8
P

3,8 = 0. However, as can be seen from the

symmetries, P6,8†
Y P

3,8
Y 6= 0.
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Backup: First occurrence

nf 0 1 2 3

SU(3) • =

Young diagrams

Table 1: Examples of SU(3) Young diagrams sorted according to their

first occurrence nf .
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Backup: Gluon exchange
A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
Nc

+
canceling N  −
suppressed
terms

c

+
canceling N  −
suppressed
terms

c

Fierz

Fierz

2 2

1

2

1

2
__

_
2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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