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Parton shower basics

I A parton shower starts from a hard matrix element for
some scattering process and dresses it up with additional
radiation (mostly gluons)

Hard part

Radiation added by shower
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In a leading color parton shower things are easy ...

I In standard parton showers where QCD is treated as if it
had infinitely many colors, the colors are described by
color lines and only color connected partons (sharing a
line) can radiate coherently→ ∼ Nparton dipoles
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In real QCD with three colors

I For Nc = 3 radiation from almost any pair of partons can
interfere→∼ N2

partons possibilities, suppressed by (1/Nc),
1/N2

c ,...
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Why investigate Nc = 3 color corrections?

I Expect that color suppressed terms become very
important for many partons

I The colored initial state and the higher energy at the LHC
gives rise to many colored partons and hence many color
suppressed terms

I Needed for exact matching of matrix elements to parton
showers

I Needed for Nc = 3 hadronization
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Dipole Factorization

I Parton showers work under the approximation that the next
parton to be emitted is soft or collinear to one of the
existing partons

I Dipole factorization gives, whenever i and j become
collinear or one of them soft:

|Mn+1(..., pi, ..., pj, ..., pk, ...)| 2 =∑
k 6=i,j

1
2pi · pj

〈Mn(pĩj, pk̃, ...) |Vij,k(pi, pj, pk)|Mn(pĩj, pk̃, ...)〉

An emitter ĩj splits into two partons i and j, with the
spectator k̃ absorbing the momentum to keep all partons
(before and after) on-shell. (Catani, Seymour
hep-ph/9605323)

ĩj

i

j

k
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The spin averaged splitting kernel is

Vij,k(pi, pj, pk) = −8παsVij,k(pi, pj, pk)
Tĩj · Tk

T2
ĩj

Where, for example, for a final-final dipole configuration, we
have

Vq→qg,k(pi, pj, pk) = CF

(
2(1− z)

(1− z)2 + p2
⊥/sijk

− (1 + z)
)
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Emission probability

For a leading Nc shower, the emission probability is

dPij,k(p2
⊥, z) = Vij,k(p2

⊥, z)
dφn+1(p2

⊥, z)
dφn

× δ(ĩj, k̃ color connected)

1 + δĩj g

Including subleading emissions, instead gives

dPij,k(p2
⊥, z) = Vij,k(p2

⊥, z)
dφn+1(p2

⊥, z)
dφn

× −1
T2

ĩj

〈Mn|Tĩj · Tk̃|Mn〉
|M|2
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Overall Picture

Using Herwig’s dipole shower

I Instead of only allowing color connected emitter-spectator
pairs to radiate, all possible pairs can radiate

I All pairs may radiate in proportion to (for the first emission)

ωn
ik =

−1
T2

ĩj

〈Mn|Tĩj · Tk̃|Mn〉
|M|2

I Reweighting to encompass negative contributions
I The full color structure is evolved to be able to evaluate the

above factor for the next emission
I Color structure is calculated using ColorFull (MS

1412.3967)
I Nc = 3 shower for a number of emissions, then standard

leading Nc shower
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Color structure

I A major challange is the SU(3) color structure of QCD
I The color structure can be decomposed in color bases

|Mn〉 =

dn∑
α=1

cn,α|αn〉 ↔Mn = (cn,1, ..., cn,dn)
T

and for this project we use trace bases
I ... but these standard “bases” are non-orthogonal and

overcomplete, with a dimension scaling ∼ (Ng + Nqq̄)!→
(Ng + Nqq̄)!2 terms when squaring

I See next talk by Johan Thorén for better bases
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New Features

Compared to our previous e+e− results (SP, MS 1206.0180),
we have added

I The g→ qq̄ splitting
I Hadronic initial state, meaning initial state radiation
I Full compatibility with all of the additional functionality in

Herwig 7.1. (So we can run any process now, in particular
LHC events)

I Subsequent standard leading Nc showering after the
Nc = 3 shower
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Full Color Shower Reaching Soft Scales

Since a limited number of Nc = 3 emissions are kept, up to 3 for
LHC and 5 for LEP, we check the pT of the last corrected
emission

5th Nc=3 emission
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3rd Nc=3 emission
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I →We go far down in pT compared to relevant jet scales, at
LEP close to the hadronization scale
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LEP Preliminary Results

For most e+e− observables we find small corrections, at the
percent level. However, some observables (thrust, out-of-plane
p⊥, hemisphere masses, aplanarity, jet multiplicities for many
jets) are corrected by ∼ 5%.
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LHC Preliminary Results

For LHC observables, corrections are typically of order a few
percent, but some observables show corrections of 10− 20%
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Figure: Rapidity of hardest and second hardest jet using a 50GeV
analysis cut
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If we could study quark-gluon scattering, we would find large
corrections
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Figure: Rapidity distribution of the hardest and second hardest jet
while considering only qg→ qg scattering and a 50 GeV analysis cut.

... but we cannot
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Requiring one forward (quark dominated) and one central
(gluon dominated) jet we find sizable corrections for many
observables
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Figure: Rapidity and ∆φ1,3 for the central/forward case
(400< M12 <600 GeV, 3.8 < |y1 + y2| < 5.2, 1.5 < |y2 − y1| < 3.5)
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We have compared to LHC data for a wide range of
observables. In general we find small corrections and no overall
visible change in data description.
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Figure: Central transverse thrust and thrust minor for
√

s = 7GeV,
CMS 1102.0068, TC = maxn̂T

∑
i |p⊥,i·n̂T |∑

i p⊥,i
,Tm,C =

∑
i |p⊥,i×n̂T |∑

i p⊥,i
for jet i, with

η < 1.3
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Conclusion, Hard Perturbative Region

I We have considered a wide range of observables at LEP
and LHC and compared to data

I Overall the data description does not change
I As long as soft scales/observables with very many jets are

not considered, the matrix element correction type of
corrections are accurately described by correcting the first
few emissions

I In general, percent level corrections are found at LEP, for
some observables (thrust, out-of-plane p⊥, hemisphere
masses, aplanarity, jet multiplicities for many jets) effects of
around 5%

I At the LHC, corrections are often a few percent, for some
observables (mostly rapidity) corrections around 10-20%
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Going Soft/Very Many Colored Partons

For soft QCD, where we cannot expect reliable results due to
the need of more color suppressed terms, resummation,
hadronization and MPI, we find larger corrections in many
cases, (jet resolution scales, cluster masses in Herwig, number
of very soft jets at LEP, charged multiplicity distribution,
individual hadron multiplicities), indicating that subleading Nc

effects probably play an important role for soft(ish) QCD
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Figure: Examples of large corrections: first clustermass in Herwig,
number of jets at LEP using a 2 GeV energy cut, charged multiplicity
distribution
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Conclusion, Soft Region

In the soft region/region of many colored partons:

I In this region, we cannot claim accurate results, however,
I we often find large corrections of several ten percent
I This affects the state going into the hadronization
I meaning that we can expect a significant effect on the tune
I Subleading Nc effects can therefore be hidden in the tune
I Need to retune
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Section 4

Current Status and Future Work
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Current Status and Future Work

I We have a fully functional Nc = 3 parton shower for any
LEP or LHC process

I Tuning should be performed before a reliable comparison
to standard showers can be done

I We still miss virtual corrections, which rearrange the color
structure without any real emissions. These are important
for gap-survival observables

I In the more distant future, an update of hadronization
models to an Nc = 3 final state would be and interesting
research task

Thank you!
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Figure: Weight distribution for e+e− (left) and pp collisions (right)
depending on the number of Nc = 3 emissions allowed. All generated
events are used in these plots, i.e., no further analysis cut is applied.
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Nc = 3 Shower Reaching Soft Scales
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More LEP Observables
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Figure: Out-of-plane p⊥ w.r.t. the thrust and thrust major axes (left),
light hemisphere mass (middle) and fraction of events containing Nch
charged particles. DELPHI, ALEPH
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Top at LHC
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Figure: Fraction of events having no additional jet with p⊥ above Q0
within a rapidity interval |y| < 0.8 (left) and fraction of events where
the scalar sum of transverse momenta within |y| < 0.8 does not
exceed Qsum (right) for tt events at

√
s = 7 TeV. ATLAS 1203.5015
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QCD “Coherence” observable

b b b b b b b b b b b b
b b

b b b b

Datab

Leading Nc
1 Nc = 3 emission
2 Nc = 3 emissions
3 Nc = 3 emissions

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

CMS,
√

s = 7 TeV, central jet 2–3 correlation, |η2| < 0.8

F η
2
(β
)

0.5 1 1.5 2 2.5 3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

β

M
C

/D
at

a

b b b b b b b b b b b b
b b

b b b b

Datab

Leading Nc
1 Nc = 3 emission
2 Nc = 3 emissions

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

CMS,
√

s = 7 TeV, central jet 2–3 correlation, |η2| < 0.8

F η
2
(β
)

0.5 1 1.5 2 2.5 3
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

β

M
C

/D
at

a

Figure: The angle β, tanβ = |φ3−φ2|
sign(η2)(η3−η2)

, using (left) an underlying

2→ 2 hard process and (right) an underlying 2→ 3 hard process.
CMS 1102.0068
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Density Operator

We can write the amplitude as a vector in some basis (trace,
multiplet, etc.),

|Mn〉 =

dn∑
α=1

cn,α|αn〉 ↔Mn = (cn,1, ..., cn,dn)
T (1)

and construct a “density operator” Mn =MnM†n, that we evolve
by

Mn+1 = −
∑
i6=j

∑
k 6=i,j

4παs

pi · pj

Vij,k(pi, pj, pk)

T2
ĩj

Tk̃,nMnT†
ĩj,n

(2)

where
Vij,k = T2

ĩj
pi · pk

pj · pk
. (3)

This allows us to calculate the color matrix element corrections.
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Color Matrix Element Corrections

Evolving the density operator, we can calculate the color matrix
element corrections for any number of emissions

ωn
ik =

−1
T2

ĩj

Tr
(

Sn+1 × Tk̃,nMnT†
ĩj,n

)
Tr (Sn ×Mn)

(4)

I Note that ωn
ik can be negative, this is included through the

weighted Sudakov algorithm (Bellm, SP, Richardson,
Siodmok, Webster, 1605.08256)

I This initially resulted in very large weights. Modifications to
the weighted Sudakov veto algorithm drastically reduced
the weights.
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Standard veto algorithm

Standard veto algorithm: we want to generate a scale q and
additional splitting variables x (e.g. z and φ) according to a
distribution dSP.

dSP(µ, xµ|q, x|Q)

= dqddx (∆P(µ|Q)δ(q− µ)δ(x− xµ)

+P(q, x)θ(Q− q)θ(q− µ)∆P(q|Q))

Where ∆P is the Sudakov form factor,

∆P(q|Q) = exp

(
−
∫ Q

q
dk
∫

ddzP(k, z)
)

To do this we use an overestimate of the distribution (with nicer
analytical properties) dSR (change P→ R in the above eqs.).
Where we require R(q, x) ≥ P(q, x) for all q, x.
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Standard veto algorithm

P(q, x) > 0 and R(q, x) ≥ P(q, x). Set k = Q

1. Generate q and x according to SR(µ, xµ|q, x|k).
2. If q = µ, there is no emission above the cutoff scale.
3. Else, accept the emission with the probability

P(q, x)

R(q, x)
.

4. If the emission was vetoed, set k = q and go back to 1.
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Weighted veto algorithm

Introduce an acceptance probability 0 ≤ ε(q, x|k, y) < 1 and a
weight ω. Set k = Q, ω = 1.

1. Generate q and x according to SR(µ, xµ|q, x|k).
2. If q = µ, there is no emission above the cutoff scale.
3. Accept the emission with the probability ε(q, x|k, y), update

the weight

ω → ω × 1
ε
× P

R

4. Otherwise update the weight to

ω → ω × 1
1− ε ×

(
1− P

R

)
and start over at 1 with k = q.
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Example of 1/Nc suppressed terms

Leading color structure:∣∣∣∣ ∣∣∣∣2 =

= TR = T2
R(N2

c − 1) ∝ N2
c .
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Example of 1/Nc suppressed terms

Leading color structure:∣∣∣∣ ∣∣∣∣2 ∝ N2
c .

Interference term:( )( )∗
=

= TR − TR

Nc

= 0− T2
R

N2
c − 1
Nc

∝ Nc.
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Example of 1/Nc suppressed terms

( )( )∗
=

= TR ︸ ︷︷ ︸
∝N2

c

−TR

Nc ︸ ︷︷ ︸
∝N2

c
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