The Magic of Color

- The QCD vertices
- Calculation and squaring of amplitudes
- Various bases:
- Trace bases
- DDM bases
- Color flow bases
- Multiplet bases
- Computational tools

Spa

September, 2015
Malin Sjödahl

Motivation

- With the LHC there is an increased interest in the treatment of color structure for processes with many colored partons
- This is applicable to fixed order calculations as well as parton showers and resummation

The QCD Lagrangian

The QCD Lagrangian

$$
\begin{array}{r}
\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi-\frac{1}{4}\left(\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}\right)^{2}+g A_{\mu}^{a} \bar{\psi} \gamma^{\mu} t^{a} \psi \\
-g f^{a b c}\left(\partial_{\mu} A_{\nu}^{a}\right) A^{\mu b} A^{\nu c}-\frac{1}{4} g^{2}\left(f^{e a b} A_{\mu}^{a} A_{\nu}^{b}\right)\left(f^{e c d} A^{\mu c} A^{\nu d}\right)
\end{array}
$$

contains:

- quark-gluon vertex, i

$$
\xrightarrow{{ }^{a}{ }^{\partial}{ }^{\mu}} j=\left(t^{a}\right)^{i}{ }_{j}
$$

Here $\left(t^{a}\right)^{i}{ }_{j}$ are SU(3) generators and I take the graph to represent the color structure alone, no $i g \gamma^{\mu}$

- triple-gluon vertex,

Here we use the convention of reading the indices counter clockwise in the $\operatorname{SU}(3)$ structure constants $f^{a b c}$, and again I only mean the color structure, no $-i g\left(g^{\alpha \beta}\left(p_{a}-p_{b}\right)^{\gamma}+\right.$ cyclic $)$

- four-gluon vertex, here color and kinematic factors are correlated (so I cannot draw the color structure alone)

b, β

$=\quad \begin{gathered}i f^{a e b} i f^{c d e}+\quad i f^{a c e} i f^{b e d} \\ \times i g_{s}^{2}\left(g^{\alpha \delta} g^{\beta \gamma}-g^{a \gamma} g^{\beta \delta}\right) \times i g_{s}^{2}\left(g^{a \delta} g^{\beta \gamma}-g^{\alpha \beta} g^{\gamma \delta}\right)\end{gathered}$

$$
\begin{aligned}
& +\quad i f^{a e d} i f^{c b e} \\
& \times i g_{s}^{2}\left(g^{\alpha \beta} g^{\gamma \delta}-g^{\alpha \gamma} g^{\beta \delta}\right)
\end{aligned}
$$

but the color structure is just a linear combination of triple-gluon vertices

Generators and structure constants

$$
\begin{aligned}
& t^{1}=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] t^{2}=\frac{1}{2}\left[\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right] t^{3}=\frac{1}{2}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& t^{4}=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right] t^{5}=\frac{1}{2}\left[\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right] \\
& t^{6}=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] t^{7}=\frac{1}{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right] t^{8}=\frac{1}{2 \sqrt{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

$$
\text { with } \operatorname{Tr}\left[t^{a} t^{b}\right]=\frac{1}{2} \delta^{a b}=T_{R} \delta^{a b} \text {, i.e. } T_{R}=\frac{1}{2}
$$

The structure constants $f^{a b c}$, defined by

$$
\left[t^{a}, t^{b}\right]=i f^{a b c} t^{c}
$$

are totally antisymmetric. The non-zero structure constants are

$$
f^{123}=1, f^{147}=f^{165}=f^{246}=f^{257}=f^{345}=f^{376}=\frac{1}{2}, f^{458}=f^{678}=\frac{\sqrt{3}}{2}
$$

and structure constants related by permutations.

But the last two slides are the most useless slides of this lecture...

Dealing with color space

Due to confinement we never observe individual colors

- We average over incoming colors
- We sum over outgoing colors
- \rightarrow we sum over the colors of all external partons
- As always in quantum mechanics we also sum over all degrees of freedom that can interfere with each other \rightarrow we sum over the colors of all internal particles
- \rightarrow We sum over all colors of all particles

So, if we for example consider

$$
q \bar{q} \rightarrow q \bar{q} \quad \quad a>\text { Poors }^{c}{ }_{d},
$$

(let's pretend we have different flavors so we only have one Feynman

diagram) we need the color sum

$$
\frac{1}{3} \sum_{a=1}^{3} \frac{1}{3} \sum_{b=1}^{3} \sum_{c=1}^{3} \sum_{d=1}^{3}\left|\sum_{g=1}^{8}\left(t^{g}\right)^{a}{ }_{b}\left(t^{g}\right)^{c}{ }_{d}\right|^{2}
$$

One way of dealing with this sum is to pick a particular representation of the generators, and sum over $3^{4} * 8=648$ terms. Luckily there are better ways...

The color structures, for example

A sum over color for

$$
\sum_{g}\left(t^{g}\right)^{a}{ }_{b}\left(t^{g}\right)^{c}{ }_{d}={ }_{b}^{a} \bigvee_{g}
$$

internal lines is always
implicit
we can view as vectors living in some vector space - the overall color singlet vector space, where outgoing plus incoming colors form a total singlet. The physical observables are given by summing over all external colors, i.e., for the interference between two different color amplitudes $A_{a, b, c, \ldots} B_{a, b, c, \ldots}$ we always want

$$
\sum_{a, b, c, \ldots}\left(A_{a, b, c, \ldots}\right)^{*} B_{a, b, c, \ldots}
$$

It is easy to prove that the above sum is a scalar product (do it yourself) on the vector space of total color singlet color structures with the external indices $a, b, c \ldots$, i.e.,

$$
\langle A, B\rangle=\sum_{a, b, c, \ldots}\left(A_{a, b, c, \ldots}\right)^{*} B_{a, b, c, \ldots}
$$

\rightarrow We can use all our knowledge of vector spaces and scalar products

$$
\begin{aligned}
\langle A \mid A\rangle & =\sum_{a, b, c, d, e, f, g, h, i}\left[\left(t^{h}\right)^{a}{ }_{b}\left(t^{h}\right)^{i}{ }_{c}\left(t^{e}\right)^{d}{ }_{i}\right]^{*}\left(t^{g}\right)^{a}{ }_{b}\left(t^{g}\right)^{f}{ }_{c}\left(t^{e}\right)^{d}{ }_{f} \\
& =\sum_{a, b, c, d, e, f, g, h, i}\left(t^{h}\right)^{b}{ }_{a}\left(t^{h}\right)^{c}{ }_{i}\left(t^{e}\right)^{i}{ }_{d}\left(t^{g}\right)^{a}{ }_{b}\left(t^{g}\right)^{f}{ }_{c}\left(t^{e}\right)^{d}{ }_{f}
\end{aligned}
$$

The first equality holds since the generators are Hermitian, and the last holds since we always sum over the color of internal lines

As seen above we can represent the squared amplitude with a picture. We can also calculate in pictures! To do so we need just a few rules

- There are N_{c} possible quark colors

$$
\sum^{a}=N_{c} \quad \sum_{a=1}^{N_{c}} \delta^{a}{ }_{a}=N_{c}
$$

- There are $N_{g}=N_{c}^{2}-1$ possible gluon colors

- The generators are traceless

$$
\sum_{\infty}^{a} g=0 \quad \sum_{a=1}^{N_{c}}\left(t^{g}\right)^{a}{ }_{a}=0
$$

- Generator normalization

- The algebra $\left[t^{a}, t^{b}\right]=i f^{a b c} t^{c} \Rightarrow$

- The Fierz identity (the completeness relation)

$$
\left(t^{g}\right)^{a}{ }_{c}\left(t^{g}\right)^{b}{ }_{d}=T_{R}\left[\delta^{a}{ }_{d} \delta^{b}{ }_{c}-\frac{1}{N_{c}} \delta^{a}{ }_{c} \delta^{b}{ }_{d}\right]
$$

Let's apply the rules to our example

To further simplify the color structure we note using Fierz

$$
\begin{aligned}
\xrightarrow[6]{6002} 2 & =T_{R}(\ldots)=\frac{1}{N_{c}} \longrightarrow \\
& =T_{R} \frac{N_{c}^{2}-1}{N_{c}} \longrightarrow C_{R}\left(N_{c}-\frac{1}{N_{c}}\right)
\end{aligned}
$$

Giving, for the squared amplitude

- In this way we can square any color amplitude and calculate any interference term. In general we have interference terms between different Feynman diagrams/color structures, but these are treated in precisely the same way.
- One way of dealing with color space is to just square the amplitudes one by one as one encounters them
- Alternatively, we may use any basis (spanning set)

The most popular bases: Trace bases

- Every 4 g vertex can be replaced by 3 g vertices:

- Every $3 g$ vertex can be replaced using:

- After this every internal gluon can be removed using Fierz:

$$
=T_{R}(\underset{\rightarrow}{\stackrel{a}{c}}
$$

$$
-\frac{1}{N_{c}} \xrightarrow{a \longrightarrow \longrightarrow}{ }^{\frac{a}{b} \xrightarrow{c}}
$$

- This can be applied to any QCD amplitude, tree level or beyond
- In general an amplitude can be written as linear combination of different color structures, like

- For example for 2 (incoming + outgoing) gluons and one $q \bar{q}$ pair

(an incoming quark is the same as an outgoing anti-quark)
- The above type of color structure can be used as a spanning set, a trace basis

These bases have some nice properties

- Conceptual simplicity
- Can be reduced for a given order in perturbation theory, for example, for tree-level N_{g}-gluon amplitudes we have ($N_{g}-1$)! color structures of form

$$
\mathcal{M}\left(g_{1}, g_{2}, \ldots, N_{g}\right)=\sum_{\sigma \in S_{N_{g}-1}} \operatorname{Tr}\left(t^{g_{1}} t^{g_{\sigma_{2}}} \ldots t^{g_{\sigma_{N}}}\right) A(\sigma)
$$

whereas for higher orders we also have products of traces.

- Taking the leading N_{c} limit is trivial and results in a flow of colors
- The basis vectors are orthogonal when $N_{c} \rightarrow \infty$
- The effect of gluon emission is easily described:

We get just one new basis vector if the emitter is an (anti-)quark and two if the emitter is a gluon

- So is the effect of gluon exchange

For these reasons trace bases are commonly used:

- MadGraph (fixed order calculations)
(J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP 1106 (2011) 128, 1106.0522)
- ColorFull (C++ code for color space, more later) (M.S., Eur.Phys.J. C75 (2015) 5, 236, 1412.3967, hepforge since 2013, http://colorfull.hepforge.org/)
- $N_{c}=3$ parton showers by M.S. and S. Plätzer, and by D. Soper and Z. Nagy
(D. Soper and Z. Nagy JHEP 0709 (2007) 114, 0706.0017, M.S. and S. Plätzer JHEP 07(2012)042, 1201.0260)
- Resummation
(M.S., JHEP 0909 (2009) 087, 0906.1121,
E. Gerwick, S Höche, S. Marzani, S. Schumann, JHEP 1502 (2015) 106, 1411.7325)

ColorMath

- I have written a Mathematica package, ColorMath, (Eur. Phys. J. C 73:2310 (2013), 1211.2099)
- ColorMath is an easy to use Mathematica package for color summed calculations in QCD, $\mathrm{SU}\left(N_{c}\right)$
- Repeated indices are implicitly summed

outr $2=$ it $t^{\{g\} q 1}{ }_{q 2} f^{\{g 1, g 2, g\}}$
$\ln [3]=$ CSimplify [Amplitude Conjugate [Amplitude /.g $\rightarrow \mathrm{h}$]]
Out[$[3]=2 \mathrm{Nc}\left(-1+\mathrm{NC}^{2}\right) \mathrm{TR}^{2}$
- ColorMath does not automatically construct bases, but given a basis (constructed by the user) it can calculate the soft anomalous dimension matrix automatically

- The ColorMath package and tutorial can be downloaded from http://library.wolfram.com/infocenter/MathSource/8442/ or www.thep.lu.se/~malin/ColorMath.html

ColorFull

For the purpose of treating a general QCD color structure (any number of partons, any order) I have written a C ++ color algebra code, ColorFull, which:

- Automatically creates trace bases for any number and kind of partons, and to arbitrary order in α_{s}
- Squares color amplitudes in various ways
- Describes the effect of gluon emission, calculates "radiation matrices", $\mathbf{T}_{\mathbf{i}}$, which gives the vectors obtained when emitting a gluon from parton i decomposed in the larger basis

- Describes the effect of gluon exchange, automatically calculates soft anomalous dimension matrices
- Interfaces to Herwig++ (≥ 2.7) via Simon Plätzer's Matchbox code and will be shipped along with the next major Herwig release

ColorFull can be downloaded from colorfull.hepforge.org, (M.S., Eur.Phys.J. C75 (2015) 5, 236, 1412.3967)

There are also drawbacks with trace bases

- Not orthogonal
\rightarrow When squaring amplitudes almost all cross terms have to be taken into account $\rightarrow N_{\text {basis }}^{2}$ terms
- Overcomplete

For $N_{g}+N_{q \bar{q}}>N_{c}$ the bases are also overcomplete

- The size of the vector space asymptotically grows as an exponential in the number of gluons $/ q \bar{q}$-pairs for finite N_{c}

- For general N_{c} the basis size grows as a factorial

$$
N_{\mathrm{vec}}\left[N_{q}, N_{g}\right]=N_{\mathrm{vec}}\left[N_{q}, N_{g}-1\right]\left(N_{g}-1+N_{q}\right)+N_{\mathrm{vec}}\left[N_{q}, N_{g}-2\right]\left(N_{g}-1\right)
$$

where

$$
\begin{aligned}
& N_{\mathrm{vec}}\left[N_{q}, 0\right]=N_{q}! \\
& N_{\mathrm{vec}}\left[N_{q}, 1\right]=N_{q} N_{q}!
\end{aligned}
$$

(S. Keppeler \& M.S. JHEP09(2012)124, 1207.0609)

- For general N_{c} and gluon only amplitudes (to all order) the size is given by Subfactorial $\left(N_{g}\right) \approx N_{g}!/ e$
- For tree-level gluon amplitudes traces may be used as spanning vectors giving $\left(N_{g}-1\right)$! spanning vectors

Example: Number of spanning vectors for N_{g} gluons (without imposing charge conjugation invariance). These numbers are representative also for N_{g} gluons plus $q \bar{q}$-pairs.

N_{g}	Vectors $N_{c}=3$	Vectors $N_{c} \rightarrow \infty$	LO Vectors $N_{c} \rightarrow \infty$
4	8	9	$3!=6$
5	32	44	$4!=24$
6	145	265	120
7	702	1854	720
8	3598	14833	5040
9	19280	133496	40320
10	107160	1334961	362880
11	614000	14684570	3628800
12	3609760	176214841	39916800

(Y. Du, M.S. \& J. Thorén, JHEP 1505 (2015) 119, 1503.00530)

The dimension of the full vector space (all orders) for $N_{c}=3$

N_{g}	$N_{q \bar{q}}=0$	N_{g}	$N_{q \bar{q}}=1$	N_{g}	$N_{q \bar{q}}=2$
4	8	3	10	2	13
5	32	4	40	3	50
6	145	5	177	4	217
7	702	6	847	5	1024
8	3598	7	4300	6	5147
9	19280	8	22878	7	27178
10	107160	9	126440	8	149318
11	614000	10	721160	9	847600
12	3609760	11	4223760	10	4944920

(M.S. \& J. Thorén, 1507.03814, accepted by JHEP)

- For tree-level gluon processes, we can get away with the tree-level color structures giving $\left(N_{g}-1\right)!^{2}$ terms when squaring amplitudes.
- For NLO gluon processes we need more color structures.
- For all order resummation all color structures will appear
$\rightarrow N_{\text {basis }}^{2} \approx\left(N_{g}!/ e\right)^{2}$ when squaring. On the other hand if we
really want to exponentiate the soft anomalous dimension
matrix this scales as $N_{\text {basis }}^{3} \approx\left(N_{g}!/ e\right)^{3}$
- Numbers for processes with quarks are comparable. (For every gluon you can alternatively treat one $q \bar{q}$-pair)
- Hard to go beyond ~ 8 gluons plus $q \bar{q}$-pairs

DDM bases

- The DDM bases (adjoint bases) are based on the observation that tree-level gluon-only color structures can be expressed as

$$
\begin{aligned}
& \mathcal{M}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\sum_{\sigma \in S_{N_{g}-2}} i f^{g_{1} g_{\sigma_{2}} i_{1}} i f^{i_{1} g_{\sigma_{3}} i_{2}} \ldots i f^{i_{n-3} g_{\sigma_{n-1}} g_{n}} A(\sigma)
\end{aligned}
$$

> V. Del Duca, L. J. Dixon, and F. Maltoni, Nucl. Phys. B 571(2000) 51-70, hep-ph/9910563

- In this way we only need $\left(N_{g}-2\right)$! spanning vectors
- Charge conjugation symmetry is manifest
- For higher order color structures additional basis vectors are needed

Color flow bases

- One way out is to give up exact treatment of color structure and run a Monte Carlo over colors
- This is particularly efficient in the color flow basis
- Here the adjoint representation indices are rewritten in terms of fundamental representation indices and new color flow Feynman rules are derived (Maltoni, Stelzer, Paul, Willenbrock, Phys.Rev. D67 (2003), hep-ph/0209271)
- Explicit colors (r, g, or b) are then assigned to the lines, and one may run a Monte Carlo sum over colors to sample color space
- This is not exact but much quicker
(Comix, T. Gleisberg, S. Hoeche, JHEP 0812 (2008) 039,
0808.3674,
S. Plätzer, Eur.Phys.J. C74 (2014) 6, 2907, 1312.2448)

- quark-gluon vertex,

- triple-gluon vertex,

- four-gluon vertex

$$
\begin{aligned}
& i g_{s}^{2}\left(2 g^{\alpha \delta} g^{\beta \gamma}-g^{\alpha \gamma} g^{\beta \delta}-g^{\alpha \beta} g^{\gamma \delta}\right) \frac{1}{T_{R}}\left({ }_{c_{2}}\right. \\
& +[c \leftrightarrow d]+[b \leftrightarrow d]
\end{aligned}
$$

- Color structure of propagator

$$
\begin{aligned}
& \Delta^{a b}={ }_{\text {rrmo }}{ }^{b} \\
& \rightarrow{ }_{a_{2}}^{a_{1}} \text { णroncer }_{b_{1}}^{b_{2}}=T_{R}\left(\begin{array}{l}
a_{1} \longrightarrow b_{2} \\
a_{2} \longrightarrow b_{1}
\end{array}-\frac{1}{N_{c}} a_{1} a_{2}\right)\binom{b_{2}}{b_{1}}
\end{aligned}
$$

- Similarly the $q \bar{q}$-pairs corresponding to external gluons have to be forced to be in octets when squaring amplitudes

Warning: Conventions differ from those in hep-ph/0209271

Multiplet bases

- QCD is based on $\operatorname{SU}(3) \rightarrow$ the color space may be decomposed into irreducible representations
- Orthogonal basis vectors corresponding to irreducible representations may be constructed
- The construction of the corresponding basis vectors is non-trivial, and a general strategy was presented relatively recently (S. Keppeler \& M.S. JHEP09(2012)124, 1207.0609)
- With general, I mean general: general number of quarks and gluons, general order in α_{s} and general N_{c}
- In this presentation I will - for comparison - talk about processes with gluons only, however, processes with quarks can be treated similarly

- The gluon basis vectors are of form

and can thus be characterized by a chain of representations $\alpha_{1}, \alpha_{2}, \ldots$ (In principle we have to differentiate between different vertices as well)
- These vectors are orthogonal (\rightarrow minimal) by construction

For many partons the size of the vector space is much smaller for $N_{c}=3$ (exponential), than for $N_{c} \rightarrow \infty$ (factorial)

N_{g}	Vectors $N_{c}=3$	Vectors $N_{c} \rightarrow \infty$ trace bases	LO Vectors $N_{c} \rightarrow \infty$ LO trace bases
4	8	9	$3!=6$
5	32	44	$4!=24$
6	145	265	120
7	702	1854	720
8	3598	14833	5040
9	19280	133496	40320
10	107160	1334961	362880

Number of basis vectors for N_{g} gluons without imposing vectors to appear in charge conjugation invariant combinations
... but the real advantage comes when squaring as the multiplet bases are orthogonal and the trace bases are not

N_{g}	Vectors $N_{c}=3$	Vectors $N_{c} \rightarrow \infty$ trace bases	LO Vectors $N_{c} \rightarrow \infty$ LO trace bases
4	8	$(9)^{2}$	$(6)^{2}$
5	32	$(44)^{2}$	$(24)^{2}$
6	145	$(265)^{2}$	$(120)^{2}$
7	702	$(1854)^{2}$	$(720)^{2}$
8	3598	$(14833)^{2}$	$(5040)^{2}$
9	19280	$(133496)^{2} \sim 10^{10}$	$(40320)^{2} \sim 10^{9}$
10	107160	$(1334961)^{2} \sim 10^{12}$	$(362880)^{2} \sim 10^{11}$

Number of terms from color when squaring for N_{g} gluons without imposing charge conjugation invariant combinations

- Multiplet bases can potentially speed up exact calculations in color space very significantly, as squaring amplitudes becomes much quicker
- But before squaring, amplitudes must be decomposed in multiplet bases
- How quickly can amplitudes be expressed in multiplet bases?

Decomposing color structure in multiplet bases

- One way of decomposing color structure into multiplet bases would be to simply evaluate the scalar product between each possible Feynman diagram and each possible vector as we have seen in the first half of this talk.
- The problem is that this scales very badly, a factorial from the number of diagrams, an exponential from the number of basis vectors and another (growing) factor from each single scalar product evaluation
- \rightarrow no way
- We need a better strategy

- Fortunately there is one: Any group invariant quantity can be evaluated using Wigner 3 j and 6 j coefficients, respectively:

- For example

- Using the multiplet basis we can evaluate the needed 3 j and 6 j coefficients for higher representations

- Furthermore, only a small number of such coefficients are needed, up to NLO

N_{g}	4	6	8	10	12
$N_{c}=3$	29	120	272	476	733
$N_{c} \geq N_{g}$	44	389	2023	8077	27631

and they can be evaluated once and for all
(Numbers could be slightly reduced by additional symmetries,
and smart choices of 3 rep. vertices)

- As a test case, all coefficients needed for evaluation of processes with up to 6 gluons have been explicitly calculated (M.S. \& J. Thorén, 1507.03814, accepted by JHEP)

Decomposing color with 6 j and 3 j coefficients

As an example consider the color structure of the Feynman diagram:

The scalar product between the color structure and a basis vector is given by:

To simplify the color structure we need a few rules:

- The completeness relation

- from which we can derive the vertex correction relation

Some other useful relations are:

- two vertex loops give just a constant

- dimension relation

In our color structure we note that we have a vertex correction:

In our case the vertex correction is:

Where the sum runs over vertices a connecting the three representations α_{1}, α_{3} and 8 , and contains at most 2 terms.

Using the vertex correction results in:

$$
A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=
$$

Now there is no trivial color structure, but we can pick any loop...

and use the completeness relation

to remove it

Applying the completeness relation and removing vertex corrections:

Removing the 4-vertex loop we get:

The final expression is:

$$
A\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\sum_{a, \psi_{1}, b, c} d_{\psi_{1}} a \stackrel{\alpha_{2}}{a \Leftrightarrow \alpha_{2}}
$$

- Knowing the 3 j and 6 j Wigner coefficients we can immediately write down the scalar product with any basis vector!
- This only has to be done once for each Feynman diagram, not once for each Feynman diagram and each basis vector
- We only need to care about non-zero projections, we could list the non-zero 6j-coefficients
- Each sum over representations contains at most 8 terms for $\mathrm{SU}(3)$, at most $N_{c}^{2}-1$ for $\operatorname{SU}\left(N_{c}\right)$

Summary

- QCD color structure can - due to confinement - always be dealt with in a purely diagrammatic way, using group invariant quantities
- In this way any amplitude can be squared
- For processes with more than a few partons it is preferable to use a "basis" to decompose the color space, for example
- a trace basis simple
- a color flow basis quick for Monte Carlo
- a multiplet basis orthogonal

Thank you for your attention!

Backup: Gluon exchange

A gluon exchange in this basis "directly" i.e. without using scalar products gives back a linear combination of (at most 4) basis tensors

- N_{c}-enhancement possible only for near by partons
\rightarrow only "color neighbors" radiate in the $N_{c} \rightarrow \infty$ limit

Backup: N_{c}-suppressed terms

That non-leading color terms are suppressed by $1 / N_{c}^{2}$, is guaranteed only for same order α_{s} diagrams with only gluons ('t Hooft 1973)

$$
=T_{R} \&-\frac{T_{R}}{N_{c}} C_{F} N_{c}=0-T_{R} T_{R} \frac{N_{c}^{2}-1}{N_{c}} \sim N_{c}
$$

Backup: $\boldsymbol{N}_{c^{-} \text {-suppressed terms }}$

For a parton shower there may also be terms which only are suppressed by one power of N_{c}

The leading N_{c} contribution scales as N_{c}^{2} before emission and N_{c}^{3} after

Backup: A parton shower perspective

- In a parton shower we start with some amplitude which we can assume that we have decomposed in the multiplet basis

- Knowing the decomposition for $N_{g}-1$ gluons, how can we decompose the N_{g} gluon amplitude?

- Scalar products? Too slow!

Let one of the gluons emit a new gluon:

To express the color structure in the new basis we need a few tricks

- The completeness relation

- A vertex correction just gives a constant

The symbols

and

are Wigner 6 j
and 3 j coefficients and their values can be calculated once and for all (M.S. \& J. Thorén, 1507.03814)

To decompose the affected side, we may insert the completeness relation repeatedly:

The representations on the other side (here right) don't change

Consider the affected side:

Inserting completeness relations we get a sum of terms of form:

What we have here are just vertex corrections which can be rewritten in terms of 3 j and 6 j coefficients

Giving us a sum of terms of form:

i.e., knowing the 3 j and 6 j symbols we can write down the resulting vectors

- By inserting the new gluon "in the middle" in the basis we guarantee that the emitted gluon need never "be transported" across more than \sim half of the reps
- Typically we get only a small fraction of all basis vectors in the larger basis:

N_{g}	$5 \rightarrow 6$	$6 \rightarrow 7$	$7 \rightarrow 8$	$8 \rightarrow 9$	$9 \rightarrow 10$
$N_{c}=3$	0.094	0.027	0.012	0.0032	0.0014
$N_{c} \geq N_{g}$	0.071	0.014	0.0054	0.00092	0.00032

(Y. Du, M.S. \& J. Thorén, JHEP 1505 (2015) 119, 1503.00530)

Consider the sum of all terms from all emissions (all emitters and all vectors) and compare to the number encountered when squaring a tree-level amplitude

N_{g}	Fraction $\left(N_{c}=3\right)$	All terms $\left(N_{c}=3\right)$	(\# tree vectors) ${ }^{2}$ (any $\left.N_{c}\right)$
$5 \rightarrow 6$	0.094	2184	$(120)^{2}$
$6 \rightarrow 7$	0.027	16372	$(720)^{2}$
$7 \rightarrow 8$	0.012	212914	$(5040)^{2}$
$8 \rightarrow 9$	0.0032	1758620	$(40320)^{2} \sim 10^{9}$
$9 \rightarrow 10$	0.0014	25407328	$(362880)^{2} \sim 10^{11}$

Numbers will be somewhat reduced by clever vertex choices, and nongeneral linear combinations

