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Motivation

e With the LHC there is an increased interest in the treatment of
color structure for processes with many colored partons

e This is applicable to fixed order calculations as well as parton
showers and resummation
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The QCD Lagrangian

The QCD Lagrangian
NS 1 a a al, a
L=9(d —m)p — (9,47 — 0, A%)? + gA% iyt
1
_gfabC(a’uAg)A,ubAl/c L 192(feabAZAg)(feCdA'ucAyd)

contains:

a (M

e quark-gluon vertex, ¢ i — (t“)ij

Malin Sjédahl 3




e triple-gluon vertex, — ifabc

e four-gluon vertex, here color and kinematic factors are correlated

KX OK

ad (1 f () )()

xig*(g g’ — g*7¢")  xig?(g" gl —

_ Z-faeb idee 4 Z-face ifbed 1 ifaed ifcbe

% ]':(] ((](1 J(/ ) gmj q 30 )

xig2(g” P10 — gMg

ad an JO")

Xiq? (g (/ — g*g"° af 10y

xig2(g*°g" — ¢*P "
but the color structure is just a linear combination of
triple-gluon vertices
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(Generators and structure constants
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The structure constants f%%¢, defined by
[ta,tb]::‘ifabctc,

are totally antisymmetric. The non-zero structure constants are

V3

1
123 147 165 246 257 345 376 458 678
—1 _ _ _ _ _ _ = _ _
/ =1, f = f = f = f = f =f —2>f =f —

and structure constants related by permutations.
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Dealing with color space

Due to confinement we never observe individual colors

e \We average over incoming colors
e \We sum over outgoing colors
e — we sum over the colors of all external partons

e As always in quantum mechanics we also sum over all degrees of
freedom that can interfere with each other — we sum over the
colors of all internal particles

e — We sum over all colors of all particles

Malin Sjédahl 7




So, if we for example consider
— — a C
—
99 = qq y a0

we need the color sum
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One way of dealing with this sum is to pick a particular representation
of the generators, and sum over 3% x 8 = 648 terms. Luckily there are
better ways...
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The color structures, for example

> ) a =

; g
we can view as vectors living in some vector space — the overall
color singlet vector space, where outgoing plus incoming colors form
a total singlet. The physical observables are given by summing over
all external colors, i.e., for the interference between two different
color amplitudes A, ... Bap,,... we always want

Z (Aa,b,c,...)*Ba,b,c,...

a,b,c,...

Malin Sjédahl 9




It is easy to prove that the above sum is a scalar product
on the vector space of total color singlet color structures

with the external indices a, b, c..., i.e.,
<A7 B> — Z (Aa,b,c,...)*Ba,b,c,...
a,b,c,...

— We can use all our knowledge of vector spaces and scalar products
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a C
Example: If A = (1), ()7 o(t) = P ther
e

(Ald) = > [ ) )] ) () (1)

a’ﬂb7c7dﬂe7f7g7h7i

= X)) ) () )

a’ﬂb7c7d7e7f7g7h7i

conjugated amplitude | amplitude

The first equality holds since the generators are Hermitian, and the

last holds since we always sum over the color of internal lines

Malin Sjodahl 11




As seen above we can represent the squared amplitude with a
picture. We can also calculate in pictures! To do so we need just a
few rules

e There are N, possible quark colors

e There are N, = N? — 1 possible gluon colors

g
= N? -1 §99 = N2 — 1

C
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e The generators are traceless

% = (t9)%, =0

e Generator normalization

Malin Sjodahl 13




o The algebra [t?,t°] = z'fabctc =

a
1
- T
b c \h
1
ifebe = [Tr[t*¢t¢] — Tr[tbtatCH
Tr

e The Fierz identity (the completeness relation)

a C a C | a ‘C
. . R —
b gg d b >< g N b d

1
(tg)ac(tg)bd — TR léadéb ﬁaacabd]
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Let's apply the rules to our example

==

To further simplify the color structure we note

NZ_1
N,

Giving, for the squared amplitude
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e In this way we can square any color amplitude and calculate any

interference term.

e One way of dealing with color space is to just square the
amplitudes one by one as one encounters them

e Alternatively, we may use any basis
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The most popular bases: Trace bases
o Every 4g vertex can be replaced by 3g vertices:

KX 3K

xig?(g® g™ — g*7¢")  xig(g™¢" — ¢° xig2(g*P g1 — g*7 ")

e Every 3g vertex can be replaced using:

a a a
B 1
— T

C b C b C

e After this every internal gluon can be removed using Fierz:

b
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e This can be applied to any QCD amplitude, tree level or beyond

e |n general an amplitude can be written as linear combination of
different color structures, like

A%M;@i}g%;%? ;

e For example for 2 (mcomlng + outgoing) gluons and one ¢g palr

\O/_ Alg %@+ Ay + As :

(an incoming quark is the same as an outgoing anti-quark)

e The above type of color structure can be used as a spanning set,

a trace basis
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These bases have some nice properties

e Conceptual simplicity

e Can be reduced for a given order in perturbation theory, for
example, for tree-level N,-gluon amplitudes we have (N, —1)!
color structures of form

M(gi, 2., Ng) = ) Tr(t7 192 .70 ) A(o)

JESNg—l

g1 Yo gJNg

TESN, -1 >
D,

whereas for higher orders we also have products of traces.
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e Taking the leading N, limit is trivial and results in a flow of
colors

e The basis vectors are orthogonal when N, — oo

e The effect of gluon emission is easily described:

194 -49#47- 39999 9444

We get just one new basis vector if the emitter is an

(anti-)quark and two if the emitter is a gluon

e So is the effect of gluon exchange
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For these reasons trace bases are commonly used:

e MadGraph (fixed order calculations)

e ColorFull (C++ code for color space, more later)

e N. = 3 parton showers by M.S. and S. Platzer, and by D. Soper
and Z. Nagy

e Resummation
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ColorMath

e | have written a Mathematica package, ColorMath,

e ColorMath is an easy to use Mathematica package for color
summed calculations in QCD, SU(V,)

e Repeated indices are implicitly summed
nz= Anpl i tude =1 f [gl, g2, g1t [{9}, 91, Q2]
oupr 1t (9191, f 191, 92, 9}

na= CSIEpl i fy [Anpl i tude Conj ugate[Anplitude /. g- h]]
ouz= 2 Nc <—1 + NCZ) TR

e ColorMath does not automatically construct bases, but given a
basis (constructed by the user) it can calculate the soft
anomalous dimension matrix automatically
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e The ColorMath package and tutorial can be downloaded from
http://library.wolfram.com/infocenter/MathSource/8442/
or www.thep.lu.se/~malin/ColorMath.html
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http://library.wolfram.com/infocenter/MathSource/8442/
www.thep.lu.se/~malin/ColorMath.html

ColorFull

For the purpose of treating a general QCD color structure (any

number of partons, any order) | have written a C++ color algebra
code, ColorFull, which:

e Automatically creates trace bases for any number and kind of
partons, and to arbitrary order in ag

e Squares color amplitudes

e Describes the effect of gluon emission, calculates “radiation
matrices”, T, which gives the vectors obtained when emitting a
gluon from parton ¢ decomposed in the larger basis
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e Describes the effect of gluon exchange, automatically calculates

soft anomalous dimension matrices

e Interfaces to Herwig++ (> 2.7) via Simon Platzer's Matchbox
code and will be shipped along with the next major Herwig

release

ColorFull can be downloaded from [colorfull.hepforge.org,
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colorfull.hepforge.org

There are also drawbacks with trace bases

e Not orthogonal
— When squaring amplitudes almost all cross terms have to be

taken into account — Nﬁ . terms
asis

e Overcomplete
For N, + N, > N, the bases are also overcomplete

e The size of the vector space asymptotically grows as an
exponential in the number of gluons/qg-pairs for finite N,

Malin Sjodahl 26




e For general N, the basis size grows as a factorial

Nvec[quNg] — Nvec[Nang o 1](Ng -1+ Nq) + Nvec[quNg - 2](Ng —1)
where

Noye|Ng, 0] = N

N[Ny, 1] = N,N,!

e For general N, and gluon only amplitudes (to all order) the size
is given by Subfactorial(V,)~ N,!/e
e For tree-level gluon amplitudes traces may be used as spanning

vectors giving (N, — 1)! spanning vectors
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Example: Number of spanning vectors for N, gluons
These numbers are
representative also for N, gluons plus gg-pairs.

N, Vectors No. =3 Vectors N. -+ 00 LO Vectors N, — oo

2 38 9 31=6
5 32 AL 41=24
6 145 265 120
I 702 1 854 720
3 3 598 14 833 5 040
9 19 280 133 496 40 320
10 107 160 1 334 961 362 880
11 614 000 14 684 570 3 628 800
12 3 609 760 176 214 841 39 916 800
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The dimension of the full vector space (all orders) for N, = 3

N, Ngz=0 | N, Ngz=1| N, Nz =2
4 8| 3 10 | 2 13
5 32 | 4 40 | 3 50
6 145 | 5 177 | 4 217
7 702 | 6 847 | 5 1 024
8 3508 | 7 4300 | 6 5 147
9 19280 | 8 22878 | 7 27 178

10 107 160 | 9 126 440 | 8 149 318

11 614 000 | 10 721160 | 9 847 600

12 3 609 760 | 11 4 223 760 | 10 4 944 920
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e For tree-level gluon processes, we can get away with the
tree-level color structures giving (N, — 1)!* terms when squaring
amplitudes.

e For NLO gluon processes we need more color structures.
e For all order resummation all color structures will appear

— N2

basis ~ (N,!/e)? when squaring.

e Numbers for processes with quarks are comparable. (For every
gluon you can alternatively treat one ¢g-pair)

e Hard to go beyond ~ 8 gluons plus qg-pairs
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DDM bases

e The DDM bases (adjoint bases) are based on the observation
that tree-level gluon-only color structures can be expressed as

,/\/l(gb ga, ... 7gn) — Z Z‘fglgoghifilga?,iz N .,ifin—?)gan_lgnA(O.)

O’ESNQ—Q

902 gUg Un 1)

0CESNG—2 gl@‘még‘m%mmgvm

e In this way we only need (N, — 2)! spanning vectors
e Charge conjugation symmetry is manifest

e For higher order color structures additional basis vectors are
needed
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Color flow bases
e One way out is to give up exact treatment of color structure and

run a Monte Carlo over colors
e This is particularly efficient in the color flow basis

e Here the adjoint representation indices are rewritten in terms of
fundamental representation indices and new color flow Feynman
rules are derived

e Explicit colors (r, g, or b) are then assigned to the lines, and one

may run a Monte Carlo sum over colors to sample color space

e This is not exact but much quicker
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e quark-gluon vertex,

a M
I
ziy = g (19— §lay0%y = i j

e triple-gluon vertex,

aj a ap ag
T
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e four-gluon vertex

X

J (m oo )() X/J (\0 )’ (](\ f(] 0 X/(] (](\ fJ V0 J (} )’()
- raeb ; pede - race ; rbed - raed ; pcbe
= if 2f + uftraf 7
% /(] (q(m g v (/ (] )/)) ><,/:(/ ((/(\() q 3 (/(\ f(/ ()) % 2”(/ ((/” j(] o _ ] g fd)

+lcd] + b+ d]
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e Color structure of propagator

Aab: a b

000000
ai by a]— 5 by bo
= gy o, = 1IR (a2 b Nc@? - )

e Similarly the ¢g-pairs corresponding to external gluons have to
be forced to be in octets when squaring amplitudes
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Multiplet bases

e QCD is based on SU(3) — the color space may be decomposed
into irreducible representations

e Orthogonal basis vectors corresponding to irreducible
representations may be constructed

e The construction of the corresponding basis vectors is
non-trivial, and a general strategy was presented relatively
recently

e With general, | mean general: general number of quarks and
gluons, general order in a; and general N,

e In this presentation | will — for comparison — talk about

processes with gluons only, however, processes with quarks can

be treated similarly
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e The gluon basis vectors are of form

and can thus be characterized by a chain of representations

1,09, ...

e These vectors are orthogonal (— minimal) by construction
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For many partons the size of the vector space is much smaller for
N. = 3 (exponential), than for N. — oo (factorial)

Ny Vectors No. =3 Vectors N. -+ 00 LO Vectors N, — oo

trace bases LO trace bases

4 8 9 31=6
5 32 44 41=24
6 145 265 120
7 702 1 854 720
8 3 598 14 833 5 040
9 19 280 133 496 40 320
10 107 160 1 334 961 362 880

Number of basis vectors for N, gluons
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... but the real advantage comes when squaring as the multiplet

bases are orthogonal and the trace bases are not

Ny

Vectors N, = 3

Vectors N, — oo

trace bases

LO Vectors N, — o0

LO trace bases

© 0O ~N O o1 b

10

38

32

145
702

3 598
19 280
107 160

(9)*

(44)°

(265)

(1 854)°

(14 833)°

(133 496)° ~ 10"°
(1 334 961)* ~ 10'?

(6)

(24)°

(120)?

(720)°

(5 040)°

(40 320)* ~ 10
(362 880)% ~ 10!

Number of terms from color when squaring for N, gluons
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e Multiplet bases can potentially speed up exact calculations in
color space very significantly, as squaring amplitudes becomes
much quicker

e But before squaring, amplitudes must be decomposed in
multiplet bases

e How quickly can amplitudes be expressed in multiplet bases?
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Decomposing color structure in
multiplet bases

e One way of decomposing color structure into multiplet bases
would be to simply evaluate the scalar product between each
possible Feynman diagram and each possible vector as we have
seen in the first half of this talk.

e The problem is that this scales very badly, a factorial from the
number of diagrams, an exponential from the number of basis
vectors and another (growing) factor from each single scalar

product evaluation
e — Nno way

e We need a better strategy
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e Fortunately there is one: Any group invariant quantity can be
evaluated using Wigner 3j and 6j coefficients, respectively:

Y
Q
e
B
e For example
=Tr(N? —1)

e Using the multiplet basis we can evaluate the needed 3j and 6]

coefficients for higher representations
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e Furthermore, only a small number of such coefficients are
needed, up to NLO

N, 4 6 8 10 12

Ne=3 29 120 272 476 733
N.> N, 44 389 2023 8077 27631

and they can be evaluated once and for all

e As a test case, all coefficients needed for evaluation of processes
with up to 6 gluons have been explicitly calculated
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Decomposing color with
6j and 3j coefficients

As an example consider the color structure of the Feynman diagram:
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The scalar product between the color structure and a basis vector is
given by:

~
~
’ N
,' . - . \\
’ N
' Vi \ 1
11 8 (8% (8% == 1, - 0V YV =
( 1 2 3) " ] 111
11 T2 I |
L T S - 1
v N LA |
L L
\ s mm Em EE B BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B B B B — '
N .
~ 4
~ L d
um Em Em EE B BN BN BN B BN BN BN BN BN B BN BN BN BN BN BN BN B BN BN BN B —-—
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To simplify the color structure we need a few rules:

e The completeness relation

a u 7

-
e -

v B j

D= o @a U U

v

e from which we can derive the vertex correction relation
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Some other useful relations are:

e two vertex loops give just a constant

Q
S,

|
SH
Q
Q
(3,7*

e dimension relation
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In our color structure we note that we have a vertex correction:

In our case the vertex correction is:

as

a9

a a9 a9
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Using the vertex correction results in:

A(&17@27a3) —
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Now there is no trivial color structure, but we can pick any loop...

7
-

d, «
A DN >=’=<
S o @a 1

v

to remove It
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Applying the completeness relation and removing vertex corrections:
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Removing the 4-vertex loop we get:
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The final expression is: c

A(a17a27a3) — Z dwl — =

ser e e e
%)

e Knowing the 3j and 6j Wigner coefficients we can immediately
write down the scalar product with any basis vector!

e This only has to be done once for each Feynman diagram, not

once for each Feynman diagram and each basis vector

e \We only need to care about non-zero projections, we could list
the non-zero 6j-coefficients

e Each sum over representations contains at most 8 terms for

SU(3)
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Summary

e QCD color structure can — due to confinement — always be
dealt with in a purely diagrammatic way, using group invariant
quantities

e In this way any amplitude can be squared

e For processes with more than a few partons it is preferable to
use a "basis’ to decompose the color space, for example
- a trace basis
- a color flow basis
- a multiplet basis

Thank you for your attention!
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Backup: Gluon exchange

A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

B ORs 1% kY
F%

canceling N; -
suppressed
terms

canceling N¢g—
suppressed
terms

n
||§
N |
0V
I
N
o E
+

e N_.-enhancement possible only for near by partons

— only “color neighbors” radiate in the N. — oo limit
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Backup: NN .-suppressed terms

That non-leading color terms are suppressed by 1/N?, is guaranteed
only for same order oy diagrams with only gluons ('t Hooft 1973)

_TR @TRCFQ —TRCFN TRTR—C—]\/CO(]\f2

e[| A S

= A

Q
TR% T Cp No = 0 — TpTp Vil ~ N,

C
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Backup: NN .-suppressed terms

For a parton shower there may also be terms which only are
suppressed by one power of N,

P [

Is 0 without emission, with ~ N, 2\//
. . ¢ Is ~ N, without emission, with
did not enter in any form,

- ) o ~ N? "included” in shower,
genuine "shower” contribution L
contribution from hard process

The leading N, contribution scales as N? before emission and N2
after
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Backup: A parton shower perspective

e In a parton shower we start with some amplitude which we can

assume that we have decomposed in the multiplet basis

1 aq e%) a3 2
- ¥ e
Amp — Cay,az,a3 3 > 4
x1,2,03
5 6
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e Knowing the decomposition for N, — 1 gluons, how can we
decompose the N, gluon amplitude?

== \<
5
7
1 2
3 4
Z 6517/827
517527 5 6

e Scalar products? Too slow!
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Let one of the gluons emit a new gluon:
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To express the color structure in the new basis we need a few tricks

e The completeness relation

i
==

Sl e

v N p

- o o v 1
1%

e A vertex correction just gives a constant
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87

The symbols & ¢ and ¢ o are Wigner 6]

s

ba v o

and 3j coefficients and their values can be calculated once and for all
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To decompose the affected side, we may insert the completeness
relation repeatedly:

The representations on the other side (here right) don’t change
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Consider the affected side:
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Inserting completeness relations we get a sum of terms of form:

What we have here are just vertex corrections which can be rewritten
in terms of 3j and 6j coefficients
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Giving us a sum of terms of form:

aq I B3 B4

A A 7

i.e., knowing the 3j and 6j symbols we can write down the resulting
vectors
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e By inserting the new gluon "in the middle” in the basis we
guarantee that the emitted gluon need never "be transported”
across more than ~ half of the reps

e Typically we get only a small fraction of all basis vectors in the

larger basis:

N, 6 7 8 9 10

N.=3 0.094 0.027 0.012 0.0032 0.0014
N.> N, 0.071 0.014 0.0054 0.00092 0.00032
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Consider the sum of all terms from all emissions (all emitters and all
vectors) and compare to the number encountered when squaring a
tree-level amplitude

Ny All terms (N. = 3)  (# tree vectors)® (any N.)
6 2 184 (120)?
7 16 372 (720)?
8 212 914 (5 040)°
9 1 758 620 (40 320)* ~ 107

10 25 407 328 (362 880)% ~ 10*!
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