Excursions in color space

- Dealing with exact color summed calculations
- Theoretical tools:
- Trace bases
- Orthogonal multiplet bases
- Computational tools:
- ColorFull C++
- ColorMath Mathematica
- Conclusions and outlook

Motivation

- With the LHC follows an increased demand of accurately calculated processes in QCD
- This is applicable to NLO calculations and resummation
- ...but my perspective is from a parton shower point of view
- First SU(3) parton shower in collaboration with Simon Plätzer, color structure treated using my C++ ColorFull code JHEP 07(2012)042, arXiv:1201.0260

Dealing with color space

- We never observe individual colors
\rightarrow we are only interested in color summed/averaged quantities
- For given external partons, the color space is a finite dimensional vector space equipped with a scalar product

$$
\langle A, B\rangle=\sum_{a, b, c, \ldots}\left(A_{a, b, c, \ldots}\right)^{*} B_{a, b, c, \ldots}
$$

Example: If

$$
A=\sum_{g}\left(t^{g}\right)^{a}{ }_{b}\left(t^{g}\right)^{c}{ }_{d}={ }_{b}^{a} \bigvee_{g}{ }_{d},
$$

then $\langle A \mid A\rangle=\sum_{a, b, c, d, g, h}\left(t^{h}\right)^{b}{ }_{a}\left(t^{h}\right)^{d}{ }_{c}\left(t^{g}\right)^{a}{ }_{b}\left(t^{g}\right)^{c}{ }_{d}$

- One way of dealing with color space is to just square the amplitudes one by one as they are encountered
- Alternatively, we may use any basis (spanning set)

The standard treatment: Trace bases

- Every 4 g vertex can be replaced by 3 g vertices:

$\times i g_{s}^{2}\left(g^{\alpha \delta} g^{\beta \gamma}-g^{\alpha \gamma} g^{\beta \delta}\right) \quad \times i g_{s}^{2}\left(g^{\alpha \beta} g^{\gamma \delta}-g^{\alpha \delta} g^{\beta \gamma}\right)$

$\times i g_{s}^{2}\left(g^{\alpha \beta} g^{\gamma \delta}-g^{\alpha \gamma} g^{\beta \delta}\right)$

(read counter clockwise)

- Every $3 g$ vertex can be replaced using:

- After this every internal gluon can be removed using:

- This can be applied to any QCD amplitude, tree level or beyond
- In general an amplitude can be written as linear combination of different color structures, like

- For example for 2 (incoming + outgoing) gluons and one $q \bar{q}$ pair

(an incoming quark is the same as an outgoing anti-quark)

The above type of color structures can be used as a spanning set, a trace basis. (Technically it's in general overcomplete, so it is rather a spanning set.)
These bases have some nice properties

- The effect of gluon emission is easily described:

- So is the effect of gluon exchange:

Convention: + when inserting after, - when inserting before

ColorFull

For the purpose of treating a general QCD color structure I have written a C ++ color algebra code, ColorFull, which:

- Automatically creates a "trace basis" for any number and kind of partons, and to any order in α_{s}
- Squares color amplitudes
- Describes the effect of gluon emission
- ... and gluon exchange
- Interfaces to Herwig++ (≥ 2.7) via Simon Plätzer's Matchbox code
- Is used in the color shower

ColorFull is now publicly available in a pre-release version at colorfull.hepforge.org.

Use case: NLO electroweak Higgs +3 jet production

In collaboration with Francisco Campanario, Terrance Figy and Simon Plätzer, Phys.Rev.Lett. 111 (2013) 211802, arXiv:1308.2932

Here, normalized centralized rapidity distribution of third jet w.r.t. two hardest jets (left) and transverse momentum of third jet (right).

However...

- The trace "bases" are non-orthogonal and overcomplete (for more than N_{c} gluons plus $q \bar{q}$-pairs)
- ... and the number of spanning vectors grows as a factorial in $N_{g}+N_{q \bar{q}}$
\rightarrow when squaring amplitudes we run into a factorial square scaling
- Hard to go beyond ~ 8 gluons plus $q \bar{q}$-pairs

However...

- The trace "bases" are non-orthogonal and overcomplete (for more than N_{c} gluons plus $q \bar{q}$-pairs)
- ... and the number of spanning vectors grows as a factorial in $N_{g}+N_{q \bar{q}}$
\rightarrow when squaring amplitudes we run into a factorial square scaling
- Hard to go beyond ~ 8 gluons plus $q \bar{q}$-pairs
- Would be nice with minimal orthogonal basis

Orthogonal multiplet bases

In collaboration with Stefan Keppeler (Tübingen)

- QCD is based on $\operatorname{SU}(3) \rightarrow$ the color space may be decomposed into irreducible representations, enumerated using Young tableau multiplication
- For example for $q q \rightarrow q q$ we have
3
\otimes \square

$\oplus \quad$| \square |
| :---: |

and the corresponding basis vectors

\qquad $+\frac{1}{2}><$

\qquad $-\frac{1}{2} \rightarrow<$

These color tensors are orthogonal both when seen as $q q$-projectors, and when seen as basis vectors on the 4-parton space

- For quarks we can construct orthogonal projectors and basis vectors using Young tableaux ...at least from the Hermitian quark projectors, arXiv:1307.6147
- An incoming anti-quark may be treated as an outgoing quark
- In general we may "comb" the involved particles as incoming and outgoing as we wish
\rightarrow no problem to deal with any number of quarks and anti-quarks
- In QCD we have quarks, anti-quarks and gluons

Dealing with gluons

- Consider $g g \rightarrow g g$, the basis vectors can be enumerated using Young tableaux multiplication

- As color is conserved an incoming multiplet of a certain kind can only go to an outgoing multiplet of the same kind, $1 \rightarrow 1,8 \rightarrow 8 \ldots \rightarrow$ We know what to expect (Charge conjugation implies that some vectors only occur together)
- The problem is the construction of the corresponding projection operators; the Young tableaux operate with "quark-units" we need to deal also with gluons

- One may think that the problem of constructing group theory based multiplet bases should have been solved a long time ago
- The $2 g \rightarrow 2 g$ case was solved in the 60's $\left(N_{c}=3\right)$
- However, until recently only a few cases had been dealt with,
those for which (loosely speaking) nothing more complicated
than two gluon projection operators is needed
- About one year ago me and Stefan Keppeler presented a general recipe for constructing gluon projection operators

JHEP09(2012)124, arXiv:1207.0609

- Using these we can find orthogonal minimal multiplet bases for any number of gluons
- From these we can construct orthogonal minimal bases for any number of quarks and gluons and any N_{c}
- We have explicitly constructed orthogonal $3 g \rightarrow 3 g$ projectors and the corresponding six gluon orthogonal bases JHEP09(2012)124, arXiv:1207.0609

- For many partons the size of the vector space is much smaller for $N_{c}=3$ (exponential), compared to for $N_{c} \rightarrow \infty$ (factorial)

Case	Vectors $N_{c}=3$	Vectors, general case
4 gluons	8	9
6 gluons	145	265
8 gluons	3598	14833
10 gluons	107160	1334961

Number of basis vectors for $N_{g} \rightarrow N_{g}$ gluons
without imposing vectors to appear in charge conjugation
invariant combinations

- Multiplet bases can potentially speed up exact calculations in color space very significantly, as squaring amplitudes is very quick
- ... but before squaring, amplitudes must be decomposed in color bases, see presentation by Johan Thorén (master student)
- For resummation and higher order calculations one also wants to quickly compute the effect of gluon exchange (master thesis of Fritiof Persson)
- It seems that both these issues can be dealt with relatively quickly \rightarrow I'm optimistic
- Finally, my long term goal is to derive recursion relations in multiplet bases. (Work initiated in collaboration with Yi-Jian Du, postdoc)

ColorMath

- Calculations are done using my Mathematica package, ColorMath, Eur. Phys. J. C 73:2310 (2013), arXiv:1211.2099
- ColorMath is an easy to use Mathematica package for color summed calculations in QCD, $\operatorname{SU}\left(N_{c}\right)$
- Repeated indices are implicitly summed
ln[2]: $=$ Amplitude $=\mathrm{If}[\mathrm{g} 1, \mathrm{~g} 2, \mathrm{~g}] \mathrm{t}[\{\mathrm{g}\}, \mathrm{q} 1, \mathrm{q} 2]$
$o_{u t[2]}=\dot{\text { i }} t^{\{g\} q 1}{ }_{q 2} f^{\{g 1, g 2, g\}}$
$\ln [3]=$ CSimplify [Amplitude Conjugate[Amplitude $/ . \mathrm{g} \rightarrow \mathrm{h}$]]
Ou[$[3]=2 \mathrm{Nc}\left(-1+\mathrm{NC}^{2}\right) \mathrm{TR}^{2}$
- The package and tutorial can be downloaded from http://library.wolfram.com/infocenter/MathSource/8442/ or www.thep.lu.se/~malin/ColorMath.html

Conclusions and outlook

- One way of dealing with color space is to use "trace bases"
- This method is pursued in my and Simon Plätzer's $N_{c}=3$ parton shower (JHEP 07(2012)042, arXiv:1201.0260) and in ColorFull, colorfull.hepforge.org.
- This type of basis is not orthogonal and not minimal
- With Stefan Keppeler I have outlined a general recipe for construction of minimal orthogonal multiplet based bases for any QCD process (JHEP09(2012)124, arXiv:1207.0609)
- This has the potential to very significantly speed up exact calculations in the color space of $\operatorname{SU}\left(N_{c}\right)$
- I have also written a Mathematica package ColorMath for performing color summed calculations in $\operatorname{SU}\left(N_{c}\right)$ (Eur. Phys. J. C 73:2310 (2013), arXiv:1211.2099)

Backup: 2 gluon solutions

- For two gluons, there are two octet projectors, one singlet projector, and 4 "new" projectors, $10, \overline{10}, 27$, and for general N_{c}, "0"
- It turns out that the new projectors can be seen as corresponding to different symmetries w.r.t. quark and anti-quark units, for example the decuplet can be seen as corresponding to

Similarly the anti-decuplet corresponds to $\frac{1}{2} \otimes \overline{\sqrt{12}}$, the 27 -plet corresponds to $\overline{112} \otimes \overline{\overline{12}}$ and the 0 -plet to $\frac{1}{\frac{1}{2}} \otimes \sqrt{\frac{1}{2}}$

Backup: 2 gluon projectors

- Problem first solved for two gluons by MacFarlane, Sudbery, and Weisz 1968, however only for $N_{c}=3$
- General N_{c} solution for two gluons by Butera, Cicuta and Enriotti 1979
- General N_{c} solution for two gluons by Cvitanović, in group theory books, 1984 and 2008, using polynomial equations
- General N_{c} solution for two gluons by Dokshitzer and Marchesini 2006, using symmetries and intelligent guesswork

Backup: Could this work in general?

On the one hand side

$$
g_{1} \otimes g_{2} \otimes \ldots \otimes g_{n} \subseteq\left(\mathrm{q}_{1} \otimes \overline{\mathrm{q}}_{1}\right) \otimes\left(\mathrm{q}_{2} \otimes \overline{\mathrm{q}}_{2}\right) \otimes \ldots \otimes\left(\mathrm{q}_{n} \otimes \overline{\mathrm{q}}_{n}\right)
$$

so there is hope...
On the other hand...

- Why should it?
- In general there are many instances of a multiplet, how do we know we construct all?

Backup: Key observation:

- Starting in a given multiplet, corresponding to some $q \bar{q}$ symmetries, such as 10 , from $\sqrt{122} \otimes \sqrt{\frac{1}{2}}$, it turns out that for each way of attaching a quark box to $\frac{112}{112}$ and an anti-quark box to $\frac{\overline{1}}{2}$, to there is at most one new multiplet! For example, the projector $\mathbf{P}^{10,35}$ can be seen as coming from

after having projected out "old" multiplets
- In fact, for large enough N_{c}, there is precisely one new multiplet for each set of $q \bar{q}$ symmetries

Backup: 2 gluon projectors

$$
\begin{aligned}
& \mathbf{P}^{10}=\frac{1}{2} \underset{\infty}{\infty}+\frac{1}{2 T_{R}^{2}} \omega_{\infty}^{\infty}-\frac{1}{2} \mathbf{P}^{8 a} \\
& \mathbf{P}^{\overline{10}}=\frac{1}{2} \underset{\infty}{\infty}-\frac{1}{2 T_{R}^{2}} \cdots \underbrace{\infty}_{\infty}-\frac{1}{2} \mathbf{P}^{8 a} \\
& \mathbf{P}^{27}=\frac{1}{2} \infty[\infty+\frac{1}{2 T_{R}^{2}} \infty \underbrace{\infty}_{\infty}-\frac{N_{c}-2}{2 N_{c}} \mathbf{P}^{8 s}-\frac{N_{c}-1}{2 N_{c}} \mathbf{P}^{1} \\
& \mathbf{P}^{0}=\frac{1}{2} \underset{\infty}{\infty}-\frac{1}{2 T_{R}^{2}} \cdots \underbrace{\infty}_{\infty}-\frac{N_{c}+2}{2 N_{c}} \mathbf{P}^{8 s}-\frac{N_{c}+1}{2 N_{c}} \mathbf{P}^{1}
\end{aligned}
$$

Backup: Some 3g example projectors

$$
\begin{aligned}
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{8 a, 8 a} & =\frac{1}{T_{R}^{2}} \frac{1}{4 N_{c}^{2}} i f_{g_{1} g_{2} i_{1}} i f_{i_{1} g_{3} i_{2}} i f_{g_{4} g_{5} i_{3}} i f_{i_{3} g_{6} i_{2}} \\
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{8 s, 27} & =\frac{1}{T_{R}} \frac{N_{c}}{2\left(N_{c}^{2}-4\right)} d_{g_{1} g_{2} i_{1}} \mathbf{P}_{i_{1} g_{3} i_{2} g_{6}}^{27} d_{i_{2} g_{4} g_{5}} \\
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,8} & =\frac{4\left(N_{c}+1\right)}{N_{c}^{2}\left(N_{c}+3\right)} \mathbf{P}_{g_{1} g_{2} i_{1} g_{3}}^{27} \mathbf{P}_{i_{1} g_{6} g_{4} g_{5}}^{27} \\
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,64=c 111 c 111} & =\frac{1}{T_{R}^{3}} \mathbf{T}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,64}-\frac{N_{c}^{2}}{162\left(N_{c}+1\right)\left(N_{c}+2\right)} \mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,8} \\
& -\frac{N_{c}^{2}-N_{c}-2}{81 N_{c}\left(N_{c}+2\right)} \mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,27 s}
\end{aligned}
$$

Backup: Three gluon multiplets

Backup: Construction of 3 gluon projectors

We start out by enumerating all projectors in $\left(8^{1} \otimes 8^{2}\right) \otimes 8^{3}$

- Starting in a singlet, the result is trivial $1^{12} \otimes 8^{3}=8^{123}$
- If we start in an octet $8^{12}, 8^{12} \otimes 8^{3}$ is known from before:

\oplus

\oplus

\oplus

\oplus

- The 3 g multiplets from (anti-) decuplets
\qquad
10
\otimes

\oplus

\oplus
n
\vdots
\vdots
u
\oplus

p_{i}
i
Z
i
0
0

\otimes

\oplus

\oplus

\oplus

$$
\begin{aligned}
& r_{1}^{1} \\
& Z_{1}^{0} Z_{1}
\end{aligned}
$$

\oplus

$$
\begin{aligned}
& r N_{1}^{r} \\
& Z_{0}^{0} \\
& Z_{1} N-1
\end{aligned}
$$

$$
\oplus
$$

0

- The 3 g multiplets from 27- and 0-plets

\oplus

\oplus

\oplus

$Z^{\circ} Z_{1}^{\prime}$ Nー
\oplus

0

$\substack{v \\ 1 \\ Z_{1} \\ 0 \\(10)}$
\oplus

\oplus

$$
\begin{aligned}
& -0 \\
& z_{1} z_{1} 0 \\
& 0
\end{aligned}
$$

0
\oplus0

Backup: Projector construction

- Construct projectors corresponding to "old" multiplets
- Construct the tensors which will give rise to "new" projectors

- From these, project out "old" multiplets

$$
\mathbf{P}^{10,35} \propto \mathbf{T}^{10,35}-\sum_{m \subseteq 10 \otimes 8} \mathbf{P}^{m} \mathbf{T}^{10,35}
$$

\rightarrow "new" projectors

Backup: Projecting out "old" multiplets

This would give us a way of constructing all projectors corresponding to "new" multiplets, if we knew how to project out all old multiplets. In $g_{1} \otimes g_{2} \otimes g_{3}$, there are many 27 -plets. How do we separate the various instance of the same multiplet?

- By the construction history!

We make sure that the $n_{g}-\nu$ first gluons are in a given multiplet! Then the various instances are orthogonal as, at some point in the construction history, there was a different projector! (More complicated for multiple occurrences...)

It turns out that the proof of this is really interesting:

- We find that the irreducible representations in $g^{\otimes n_{g}}$ for varying N_{c} stand in a one to one, or one to zero correspondence to each other! (For each $\operatorname{SU}(3)$ multiplet there is an $\mathrm{SU}(5)$ version, but not vice versa.)
- Every multiplet in $g^{\otimes n_{g}}$ can be labeled in an N_{c}-independent way using the lengths of the columns. For example

\square
$\begin{array}{r}\square \\ \vdots \\ Z \\ \square \\ \square \\ \square \\ \hline\end{array}$

1

$\begin{aligned} & \square \\ & 1 \\ & Z \\ & Z \\ & \square \\ & \square \\ & \square\end{aligned}$
$\begin{array}{r}8 \\ \hline\end{array}$
\oplus

\oplus

\oplus

I have not seen this column notation elsewhere... have you?

Backup: Number of projection operators and basis vectors

In general, for many partons the size of the vector space is much smaller for $N_{c}=3$, compared to for $N_{c} \rightarrow \infty$

Case	Projectors $N_{c}=3$	Projectors $N_{c}=\infty$	Vectors $N_{c}=3$	Vectors $N_{c}=\infty$
$2 \mathrm{~g} \rightarrow 2 \mathrm{~g}$	6	7	8	9
$3 \mathrm{~g} \rightarrow 3 \mathrm{~g}$	29	51	145	265
$4 \mathrm{~g} \rightarrow 4 \mathrm{~g}$	166	513	3598	14833
$5 \mathrm{~g} \rightarrow 5 \mathrm{~g}$	1002	6345	107160	1334961
Number of projection operators and basis vectors for $N_{g} \rightarrow N_{g}$				
gluons without imposing projection operators and vectors to appear				
in charge conjugation invariant combinations				

- The size of the vector spaces asymptotically grows as an exponential in the number of gluons $/ q \bar{q}$-pairs for finite N_{c}
- For general N_{c} the basis size grows as a factorial

$$
N_{\mathrm{vec}}\left[n_{q}, N_{g}\right]=N_{\mathrm{vec}}\left[n_{q}, N_{g}-1\right]\left(N_{g}-1+n_{q}\right)+N_{\mathrm{vec}}\left[n_{q}, N_{g}-2\right]\left(N_{g}-1\right)
$$

where

$$
\begin{aligned}
N_{\mathrm{vec}}\left[n_{q}, 0\right] & =n_{q}! \\
N_{\mathrm{vec}}\left[n_{q}, 1\right] & =n_{q} n_{q}!
\end{aligned}
$$

Backup: First occurrence

Examples of $\operatorname{SU}(3)$ Young diagrams sorted according to their first occurrence n_{f}.

Backup: The importance of Hermitian projectors

The standard Young projection operators $\mathbf{P}_{Y}^{6,8}$ and $\mathbf{P}_{Y}^{\overline{3}, 8}$ compared to their Hermitian versions $\mathbf{P}^{6,8}$ and $\mathbf{P}^{\overline{3}, 8}$. Clearly $\mathbf{P}^{6,8 \dagger} \mathbf{P}^{\overline{3}, 8}=\mathbf{P}^{6,8} \mathbf{P}^{\overline{3}, 8}=0$. However, as can be seen from the symmetries, $\mathbf{P}_{Y}^{6,8 \dagger} \mathbf{P}_{Y}^{\overline{3}, 8} \neq 0$.

Backup: Gluon exchange

A gluon exchange in this basis "directly" i.e. without using scalar products gives back a linear combination of (at most 4) basis tensors

- N_{c}-enhancement possible only for near by partons
\rightarrow only "color neighbors" radiate in the $N_{c} \rightarrow \infty$ limit

Backup: Number of emissions

First, simply consider the number of emissions for a LEP-like setting

... this is not an observable, but it is a genuine uncertainty on the number of emissions in the perturbative part of a parton shower

Backup: Thrust

For standard observables small effects, here thrust $T=\max _{n} \frac{\sum_{i}\left|\mathrm{p}_{\mathrm{p}} \cdot \mathrm{n}\right|}{\sum_{i}\left|\mathrm{p}_{\mathrm{i}}\right|}$

NOTE: Larger effects expected at LHC

Backup: Angular distribution

Cosine of angle between third and fourth jet

NOTE: Larger effects expected at LHC

Backup: Some tailored observables

For tailored observables we find larger differences

Average transverse momentum and rapidity of softer particles with respect to the thrust axis defined by the three hardest partons NOTE: Larger effects expected at LHC

Backup: $\boldsymbol{N}_{c^{-} \text {-suppressed terms }}$

That non-leading color terms are suppressed by $1 / N_{c}^{2}$, is guaranteed only for same order α_{s} diagrams with only gluons ('t Hooft 1973)

$=T_{R}$ \& $-\frac{T_{R}}{N_{c}} C_{F} N_{c}=0-T_{R} T_{R} \frac{N_{c}^{2}-1}{N_{c}} \sim N_{c}$

Backup: $\boldsymbol{N}_{c^{-} \text {-suppressed terms }}$

For a parton shower there may also be terms which only are suppressed by one power of N_{c}

The leading N_{c} contribution scales as N_{c}^{2} before emission and N_{c}^{3} after

