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Motivation

• With the LHC follows an increased demand of accurately

calculated processes in QCD

• This is applicable to NLO calculations and resummation

• ...but my perspective is from a parton shower point of view

• First SU(3) parton shower in collaboration with Simon Plätzer

JHEP 07(2012)042, arXiv:1201.0260 color structure treated

using my C++ ColorFull code
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Dealing with color space

• We never observe individual colors

→ we are only interested in color summed/averaged quantities

• For given external partons, the color space is a finite dimensional

vector space equipped with a scalar product

〈A,B〉 =
∑

a,b,c,...

(Aa,b,c,...)
∗Ba,b,c,...

Example: If

A =
∑

g

(tg)a b(t
g)c d =

a

b

c

dg
,

then 〈A|A〉 =
∑

a,b,c,d,g,h(t
h)b a(t

h)d c(t
g)a b(t

g)c d
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• One way of dealing with color space is to just square the

amplitudes as one encounters them

• Alternatively, we may use any basis (spanning set)
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The standard treatment: Trace bases
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2

s(g
αδgβγ

− gαγgβδ)

a, α b, β

c, γ d, δ
×ig2

s(g
αβgγδ

− gαδgβγ) ×ig2

s(g
αβgγδ

− gαγgβδ)

(read counter clockwise)

• Every 3g vertex can be replaced using:

= 1
TR

(

i fa b c

a

b c

− )

• After this every internal gluon can be removed using:

= TR − TR
Nc
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• This can be applied to any QCD amplitude, tree level or beyond

• In general an amplitude can be written as linear combination of

different color structures, like

A + +B ...

• For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)
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The above type of color structures can be used as a spanning set, a

trace basis. (Technically it’s in general overcomplete, so it is rather a

spanning set.)

These bases have some nice properties

• The effect of gluon emission is easily described:

Convention: + when inserting after, minus when inserting before.

= −→

• So is the effect of gluon exchange:

= TR( − +

g1 g2 g3 g4 g1 g2 g3 g4 g2 g3 g1 g4

Convention: + when inserting after, - when inserting before

)

g1 g2 g3 g4
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ColorFull

For the purpose of treating a general QCD color structure I have

written a C++ color algebra code, ColorFull, which:

• Is used in the color shower with Simon Plätzer

• Collaborates with Simon’s Matchbox code

• Automatically creates a “trace basis” for any number and kind

of partons, and to any order in αs

• Describes the effect of gluon emission

• ... and gluon exchange

• Squares color amplitudes

• Is planned to be published separately later this year
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However...

• This type of “basis” is non-orthogonal and overcomplete

(for more than Nc gluons plus qq-pairs)

• ... and the number of spanning vectors grows as a factorial in

Ng +Nqq

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond ∼ 8 gluons plus qq-pairs

Malin Sjödahl 9



However...

• This type of “basis” is non-orthogonal and overcomplete

(for more than Nc gluons plus qq-pairs)

• ... and the number of spanning vectors grows as a factorial in

Ng +Nqq

→ when squaring amplitudes we run into a factorial square

scaling

• Hard to go beyond ∼ 8 gluons plus qq-pairs

• Would be nice with minimal orthogonal basis
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Orthogonal multiplet bases

In collaboration with Stefan Keppeler (Tübingen)

• QCD is based on SU(3) → the color space may be decomposed

into irreducible representations, enumerated using Young tableau

multiplication

• For example for qq → qq we have

⊗ = ⊕

3 3 6 3

and the corresponding basis vectors

= 1
2

+ 1
2

,
= 1

2
− 1

2

These color tensors are orthogonal both when seen as

qq-projectors, and when seen as basis vectors on the 4-parton

space
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• For quarks we can construct orthogonal projectors and basis

vectors using Young tableaux ...at least from the Hermitian

quark projectors

• An incoming anti-quark may be treated as an outgoing quark

• In general we may “comb” the involved particles as incoming

and outgoing as we wish

→ no problem to deal with any number of quarks and

anti-quarks

• In QCD we have quarks, anti-quarks and gluons
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Dealing with gluons

• Consider gg → gg, the basis vectors can be enumerated using
Young tableaux multiplication

⊗ =
• ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 0

1 8 8 10 10 27 0

• As color is conserved an incoming multiplet of a certain kind can

only go to an outgoing multiplet of the same kind,

1 → 1, 8 → 8... → We know what to expect

(Charge conjugation implies that some vectors only occur

together)

• The problem is the construction of the corresponding projection

operators; the Young tableaux operate with “quark-units” we

need to deal also with gluons
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• One may think that the problem of constructing group theory

based multiplet bases should have been solved a long time ago
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• One may think that the problem of constructing group theory

based multiplet bases should have been solved a long time ago

• The 2g → 2g case was solved in the 60’s (Nc = 3)
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• One may think that the problem of constructing group theory

based multiplet bases should have been solved a long time ago

• The 2g → 2g case was solved in the 60’s (Nc = 3)

• However, until recently only a few cases had been dealt with,

those for which (loosely speaking) nothing more complicated

than two gluon projection operators is needed
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• One may think that the problem of constructing group theory

based multiplet bases should have been solved a long time ago

• The 2g → 2g case was solved in the 60’s (Nc = 3)

• However, until recently only a few cases had been dealt with,

those for which (loosely speaking) nothing more complicated

than two gluon projection operators is needed

• About one year ago me and Stefan Keppeler presented a general

recipe for constructing gluon projection operators

JHEP09(2012)124, arXiv:1207.0609
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• Using these we can find orthogonal minimal multiplet bases for

any number of gluons

• From these we can construct orthogonal minimal bases for any

number of quarks and gluons and any Nc

• We have explicitly constructed orthogonal 3g → 3g projectors

and the corresponding six gluon orthogonal bases

JHEP09(2012)124, arXiv:1207.0609
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• For many partons the size of the vector space is much smaller

for Nc = 3 (exponential), compared to for Nc → ∞ (factorial)

Case Vectors Nc = 3 Vectors, general case

4 gluons 8 9

6 gluons 145 265

8 gluons 3 598 14 833

10 gluons 107 160 1 334 961

Number of basis vectors for Ng → Ng gluons

without imposing vectors to appear in charge conjugation

invariant combinations

• Multiplet bases have the potential to very significantly speed up

exact calculations
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ColorMath

• Calculations are done using my Mathematica package,

ColorMath, Eur. Phys. J. C 73:2310 (2013), arXiv:1211.2099

• ColorMath is an easy to use Mathematica package for color

summed calculations in QCD, SU(Nc)

• Repeated indices are implicitly summed

In[2]:= Amplitude = I f@g1, g2, gD t@8g<, q1, q2D

Out[2]= ä t8g<q1q2 f
8g1,g2,g<

In[3]:= CSimplify@Amplitude Conjugate@Amplitude �. g ® hDD

Out[3]= 2 Nc I-1 + Nc2M TR2

• The package and tutorial can be downloaded from

http://library.wolfram.com/infocenter/MathSource/8442/

or www.thep.lu.se/~malin/ColorMath.html
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Conclusions
• One way of dealing with color space is to use ”trace bases”

• This method is pursued in my and Simon Plätzer’s Nc = 3

parton shower (JHEP 07(2012)042, arXiv:1201.0260) and in

ColorFull

• This type of basis is not orthogonal and not minimal

• With Stefan Keppeler I have outlined a general recipe for

construction of minimal orthogonal multiplet based bases for

any QCD process (JHEP09(2012)124, arXiv:1207.0609)

• This has the potential to very significantly speed up exact

calculations in the color space of SU(Nc)

• I have also written a Mathematica package ColorMath for

performing color summed calculations in SU(Nc) (Eur. Phys. J.

C 73:2310 (2013), arXiv:1211.2099)
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Backup: 2 gluon solutions

• For two gluons, there are two octet projectors, one singlet

projector, and 4 “new” projectors, 10, 10, 27, and for general

Nc, “0”

• It turns out that the new projectors can be seen as corresponding

to different symmetries w.r.t. quark and anti-quark units, for

example the decuplet can be seen as corresponding to

P
10 ∝

1 2

1
2

− octet(s)− (singlet)

Similarly the anti-decuplet corresponds to 1
2

⊗ 1 2 , the 27-plet

corresponds to 1 2 ⊗ 1 2 and the 0-plet to 1
2

⊗
1
2
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Backup: 2 gluon projectors

• Problem first solved for two gluons by MacFarlane, Sudbery, and

Weisz 1968, however only for Nc = 3

• General Nc solution for two gluons by Butera, Cicuta and

Enriotti 1979

• General Nc solution for two gluons by Cvitanović, in group

theory books, 1984 and 2008, using polynomial equations

• General Nc solution for two gluons by Dokshitzer and

Marchesini 2006, using symmetries and intelligent guesswork
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Backup: Could this work in general?

On the one hand side

g1 ⊗ g2 ⊗ ....⊗ gn ⊆ (q1 ⊗ q̄1)⊗ (q2 ⊗ q̄2)⊗ ...⊗ (qn ⊗ q̄n)

so there is hope...

On the other hand...

• Why should it?

• In general there are many instances of a multiplet, how do we

know we construct all?
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Backup: Key observation:

• Starting in a given multiplet, corresponding to some qq

symmetries, such as 10, from 1 2 ⊗
1
2
, it turns out that for each

way of attaching a quark box to 1 2 and an anti-quark box to 1
2
,

to there is at most one new multiplet! For example, the

projector P10,35 can be seen as coming from

P10P10

1 3
2

1 2 3

after having projected out ”old” multiplets

• In fact, for large enough Nc, there is precisely one new multiplet

for each set of qq symmetries
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Backup: 2 gluon projectors

P
1 =

1

N2
c − 1

, P
8s =

Nc

2TR(N2
c − 4)

, P
8a =

1

2NcTR

,

P
10 =

1

2
+

1

2T 2

R

−

1

2
P

8a

P
10 =

1

2
−

1

2T 2

R

−

1

2
P

8a

P
27 =

1

2
+

1

2T 2

R

−

Nc − 2

2Nc

P
8s

−

Nc − 1

2Nc

P
1

P
0 =

1

2
−

1

2T 2

R

−

Nc + 2

2Nc

P
8s

−

Nc + 1

2Nc

P
1
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Backup: Some 3g example projectors

P
8a,8a
g1 g2 g3 g4 g5 g6

=
1

T 2
R

1

4N2
c

ifg1 g2 i1ifi1 g3 i2ifg4 g5 i3ifi3 g6 i2

P
8s,27
g1 g2 g3 g4 g5 g6

=
1

TR

Nc

2(N2
c − 4)

dg1 g2 i1P
27
i1 g3 i2 g6

di2 g4 g5

P
27,8
g1 g2 g3 g4 g5 g6

=
4(Nc + 1)

N2
c (Nc + 3)

P
27
g1 g2 i1 g3

P
27
i1 g6 g4 g5

P
27,64=c111c111
g1 g2 g3 g4 g5 g6

=
1

T 3
R

T
27,64
g1 g2 g3 g4 g5 g6

−
N2

c

162(Nc + 1)(Nc + 2)
P

27,8
g1 g2 g3 g4 g5 g6

−
N2

c −Nc − 2

81Nc (Nc + 2)
P

27,27s
g1 g2 g3 g4 g5 g6
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Backup: Three gluon multiplets
SU(3) dim 1 8 10 10 27 0

Multiplet c0c0 c1c1 c11c2 c2c11 c11c11 c2c2

((45)8s6)1 2 × ((45)8s6)8s or a ((45)8s6)10 ((45)8s6)10 ((45)8s6)27 ((45)8s6)0

((45)8a6)1 2 × ((45)8a6)8s or a ((45)8a6)10 ((45)8a6)10 ((45)8a6)27 ((45)8a6)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)106)8 ((45)106)10 ((45)106)10 ((45)106)27 ((45)106)0

((45)276)8 ((45)276)10 ((45)276)10 ((45)276)27 ((45)06)0

((45)06)8 ((45)06)10 ((45)06)10 ((45)276)27 ((45)06)0

SU(3) dim 64 35 35 0

Multiplet c111c111 c111c21 c21c111 c21c21

((45)276)64 ((45)106)35 ((45)106)35 ((45)106)c21c21

((45)276)35 ((45)276)35 ((45)106)c21c21

((45)276)c21c21

((45)06)c21c21

SU(3) dim 0 0 0 0 0

Multiplet c111c3 c3c111 c21c3 c3c21 c3c3

((45)106)c111c3 ((45)106)c3c111 ((45)106)c21c3 ((45)106)c3c21 ((45)06)c3c3

((45)06)c21c3 ((45)06)c3c21

Multiplets for g4 ⊗ g5 ⊗ g6
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Backup: Construction of 3 gluon
projectors

We start out by enumerating all projectors in (81 ⊗ 82)⊗ 83

• Starting in a singlet, the result is trivial 112 ⊗ 83 = 8123

• If we start in an octet 812, 812 ⊗ 83 is known from before:

N
c
-1

1 N
c
-1

1 N
c

N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2

⊗ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ◦

8 8 1 8 8 10 10 27 0

Malin Sjödahl 25



• The 3g multiplets from (anti-) decuplets
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• The 3g multiplets from 27- and 0-plets
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Backup: Projector construction

• Construct projectors corresponding to “old” multiplets

• Construct the tensors which will give rise to “new” projectors

T
10,35 ∝

P10P10

1 2 3

1 3
2

• From these, project out “old” multiplets

P
10,35 ∝ T

10,35 −
∑

m⊆10⊗8

P
m
T

10,35

→ “new” projectors
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Backup: Projecting out ”old” multiplets
This would give us a way of constructing all projectors corresponding

to ”new” multiplets, if we knew how to project out all old multiplets.

In g1 ⊗ g2 ⊗ g3, there are many 27-plets. How do we separate the

various instance of the same multiplet?

• By the construction history!

PM2
PM3

P
Mng

PM3
PM2

... ... ... ...

. . . . . .

. . .

. . .

. . .

. . .

We make sure that the ng − ν first gluons are in a given

multiplet! Then the various instances are orthogonal as, at some

point in the construction history, there was a different projector!

(More complicated for multiple occurrences...)
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It turns out that the proof of this is really interesting:

• We find that the irreducible representations in g⊗ng for varying

Nc stand in a one to one, or one to zero correspondence to each

other! (For each SU(3) multiplet there is an SU(5) version, but

not vice versa.)

• Every multiplet in g⊗ng can be labeled in an Nc-independent
way using the lengths of the columns. For example

N
c
-1

1 N
c
-1

1 N
c

N
c
-1

1 N
c
-1

1 N
c
-2

1 1 N
c
-1

N
c
-1

2 N
c
-1

N
c
-1

1 1 N
c
-2

2

⊗ = • ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ◦

8 8 1 8 8 10 10 27 0

I have not seen this column notation elsewhere... have you?
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Backup: Number of projection
operators and basis vectors

In general, for many partons the size of the vector space is much

smaller for Nc = 3, compared to for Nc → ∞

Case Projectors Nc = 3 Projectors Nc = ∞ Vectors Nc = 3 Vectors Nc = ∞

2g → 2g 6 7 8 9

3g → 3g 29 51 145 265

4g → 4g 166 513 3 598 14 833

5g → 5g 1 002 6 345 107 160 1 334 961

Number of projection operators and basis vectors for Ng → Ng

gluons without imposing projection operators and vectors to appear

in charge conjugation invariant combinations
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• The size of the vector spaces asymptotically grows as an

exponential in the number of gluons/qq-pairs for finite Nc

• For general Nc the basis size grows as a factorial

Nvec[nq, Ng] = Nvec[nq, Ng − 1](Ng − 1 + nq) +Nvec[nq, Ng − 2](Ng − 1)

where

Nvec[nq, 0] = nq!

Nvec[nq, 1] = nqnq!
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Backup: First occurrence

nf 0 1 2 3

SU(3) • =

Young diagrams

Examples of SU(3) Young diagrams sorted according to their first

occurrence nf .
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Backup: The importance of Hermitian
projectors

P
6,8
Y = 4

3
, P

6,8 = 4
3

P
3,8
Y = 4

3
, P

3,8 = 4
3

The standard Young projection operators P6,8
Y and P

3,8
Y compared to

their Hermitian versions P6,8 and P
3,8.

Clearly P
6,8†

P
3,8 = P

6,8
P

3,8 = 0. However, as can be seen from the

symmetries, P6,8†
Y P

3,8
Y 6= 0.

Malin Sjödahl 34



Backup: Gluon exchange

A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
Nc

+
canceling N  −
suppressed
terms

c

+
canceling N  −
suppressed
terms

c

Fierz

Fierz

2 2

1

2

1

2
__

_
2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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Backup: Number of emissions
First, simply consider the number of emissions for a LEP-like setting

0.01

0.1

1

number of emissions

DipoleShower + ColorFull

0.6
0.8

1
1.2
1.4

1 2 3 4 5 6

nemissions

full
shower

strict large-Nc

ev
en

t
fr

ac
ti

on
x
/f

u
ll

... this is not an observable, but it is a genuine uncertainty on the

number of emissions in the perturbative part of a parton shower
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Backup: Thrust

For standard observables small effects, here thrust T = maxn

∑
i
|pi·n|∑
i
|pi|

0.0001

0.001

0.01

0.1

1

10

100

Thrust, τ = 1 − T

DipoleShower + ColorFull

0.8
0.9

1
1.1
1.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

τ

full
shower

strict large-Nc

N
−

1
d
N

/d
τ

x
/f

u
ll

NOTE: Larger effects expected at LHC
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Backup: Angular distribution
Cosine of angle between third and fourth jet

0

0.2

0.4

0.6

0.8

1

Angle between softest jets

DipoleShower + ColorFull

0.8
0.9

1
1.1
1.2

-1 -0.5 0 0.5 1

cos α34

full
shower

strict large-Nc

N
−

1
d
N

/d
co

s
α

3
4

x
/f

u
ll

NOTE: Larger effects expected at LHC
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Backup: Some tailored observables
For tailored observables we find larger differences

0.001

0.01

0.1

1

average transverse momentum w.r.t. ~n3

DipoleShower + ColorFull

0.8
0.9

1
1.1
1.2

1 10

〈p⊥〉/GeV

full
shower

strict large-Nc

G
eV

N
−

1
d
N

/d
〈p

⊥
〉

x
/f

u
ll

0.1

1

average rapidity w.r.t. ~n3

DipoleShower + ColorFull

0.8
0.9

1
1.1
1.2

0 0.5 1 1.5 2 2.5 3

〈y〉

full
shower

strict large-Nc

N
−

1
d
N

/d
〈y
〉

x
/f

u
ll

Average transverse momentum and rapidity of softer particles with

respect to the thrust axis defined by the three hardest partons

NOTE: Larger effects expected at LHC
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Backup: Nc-suppressed terms

That non-leading color terms are suppressed by 1/N2
c , is guaranteed

only for same order αs diagrams with only gluons (’t Hooft 1973)

2

= = TR

= TR = TR CF = TR CF Nc = TR TR
N2
c−1
Nc

Nc ∝ N2
c

= =

= TR −TR
Nc

− TR
Nc

CF Nc = 0 − TR TR
N2
c−1
Nc

∼ Nc= TR

∗
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Backup: Nc-suppressed terms

For a parton shower there may also be terms which only are

suppressed by one power of Nc

= =

∗

= TR
−TR

Nc

Is 0 without emission, with ∼ N2
c

did not enter in any form,

genuine ”shower” contribution

Is ∼ Nc without emission, with
∼ N2

c ”included” in shower,

contribution from hard process

The leading Nc contribution scales as N2
c before emission and N3

c

after
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