# Orthogonal multiplet bases in color space 

In collaboration with<br>Stefan Keppeler (Tübingen),<br>JHEP09(2012)124, arXiv:1207.0609

- Motivation
- The standard method (trace basis)
- Orthogonal multiplet bases for $\operatorname{SU}\left(N_{c}\right)$
- Conclusion and outlook


## Motivation

- With the start of the LHC follows an increased demand of accurately calculated processes in QCD
- This is applicable to NLO calculations and resummation
- ...but my perspective is from a parton shower point of view
- First SU(3) parton shower in collaboration with Simon Plätzer JHEP 07(2012)042, color structure treated using my C++ ColorFull code



## The color space

- We never observe individual colors $\rightarrow$ we are only interested in color summed quantities
- For given external partons, the color space is a finite dimensional vector space equipped with a scalar product

$$
<A, B>=\sum_{a, b, c, \ldots}\left(A_{a, b, c, \ldots}\right)^{*} B_{a, b, c, \ldots}
$$

Example: If

$$
\begin{gathered}
A=\sum_{g}\left(t^{g}\right)^{a}{ }_{b}\left(t^{g}\right)^{c}{ }_{d}=\sum_{g}{ }_{b}^{a}{ }_{g}{ }_{g},{ }_{d}, \\
\text { then }<A \mid A>=\sum_{a, b, c, d, g, h}\left(t^{g}\right)^{b}{ }_{a}\left(t^{g}\right)^{d}{ }_{c}\left(t^{h}\right)^{a}{ }_{b}\left(t^{h}\right)^{c}{ }_{d}
\end{gathered}
$$

- We may use any basis (spanning set)



## The standard treatment

- Every 4 g vertex can be replaced by 3 g vertices:



$\times i g_{s}^{2}\left(g^{\alpha \delta} g^{\beta \gamma}-g^{\alpha \gamma} g^{\beta \delta}\right) \quad \times i g_{s}^{2}\left(g^{\alpha \beta} g^{\gamma \delta}-g^{\alpha \delta} g^{\beta \gamma}\right)$

$\times i g_{s}^{2}\left(g^{\alpha \beta} g^{\gamma \delta}-g^{\alpha \gamma} g^{\beta \delta}\right)$


## (read counter clockwise)

- Every 3 g vertex can be replaced using:

- After this every internal gluon can be removed using:


- This can be applied to any QCD amplitude, tree level or beyond
- For gluons at tree level, the result is a sum over closed quark-lines
- At one loop we may have a product of up to two traces, and for arbitrary order up to $N_{g} / 2$ traces
- For processes with quarks there are open quark lines as well: For example for 2 (incoming + outgoing) gluons and one $q \bar{q}$ pair

- In general an amplitude can be written as linear combination of different color structures, like

- This is the kind of "trace bases" used in ColorFull for the SU(3) parton shower, and in most NLO calculations


It has some nice properties

- The effect of gluon emission is easily described:


Convention: + when inserting after, minus when inserting before.

- So is the effect of gluon exchange:


Convention: + when inserting $\xrightarrow[\text { after, }- \text { when inserting before }]{ }$


## ColorFull

For the purpose of treating a general QCD color structure I have written a C ++ color algebra code, ColorFull, which:

- Is used in the color shower with Simon Plätzer
- automatically creates a "trace basis" for any number and kind of partons, and to any order in $\alpha_{\mathrm{s}}$
- describes the effect of gluon emission
- ... and gluon exchange
- squares color amplitudes
- can be used with boost for optimized calculations
- is planned to be published separately



## However...

- This type of "basis" is non-orthogonal and overcomplete (for more than $N_{c}$ gluons plus $q \bar{q}$-pairs)
- ... and the number of basis vectors grows as a factorial in $N_{g}+N_{q \bar{q}}$
$\rightarrow$ when squaring amplitudes we run into a factorial square scaling
- Hard to go beyond $\sim 8$ gluons plus $q \bar{q}$-pairs


## However...

- This type of "basis" is non-orthogonal and overcomplete (for more than $N_{c}$ gluons plus $q \bar{q}$-pairs)
- ... and the number of basis vectors grows as a factorial in $N_{g}+N_{q \bar{q}}$
$\rightarrow$ when squaring amplitudes we run into a factorial square scaling
- Hard to go beyond $\sim 8$ gluons plus $q \bar{q}$-pairs
- Would be nice with minimal orthogonal basis



## Orthogonal multiplet bases

## In collaboration with Stefan Keppeler

- The color space may be decomposed into irreducible representations, enumerated using Young tableaux multiplication
- For example for $q q \rightarrow q q$ we have

and the corresponding basis vectors

$\qquad$ $-\frac{1}{2} \rightarrow<$

Here Cvitanović's birdtrack notation is used. These color tensors are orthogonal both when seen as $q q$-projectors, and when seen as basis vectors on the 4-parton space


- For quarks we can construct orthogonal projectors and basis vectors using Young tableaux ...at least from the Hermitian quark projectors
- In fact the $q q \rightarrow q q$ color space is the same as for $q \bar{q} \rightarrow q \bar{q}$,

and we could as well have used the basis:
- In general we may "comb" the involved particles as incoming and outgoing as we wish
- In QCD we have quarks, anti-quarks and gluons
$\rightarrow$ No obvious way to construct projectors



## The simplest gluon example, $g g \rightarrow g g$

- Basis vectors can be enumerated using Young tableaux multiplication


0
0

- As color is conserved an incoming multiplet of a certain kind can only go to an outgoing multiplet of the same kind, $1 \rightarrow 1,8 \rightarrow 8$...
Charge conjugation implies that some vectors only occur together...


The problem is the construction of the corresponding projection operators; the Young tableaux operate with "quark-units"

- Problem first solved for two gluons by MacFarlane, Sudbery, and Weisz 1968, however only for $N_{c}=3$
- General $N_{c}$ solution for two gluons by Butera, Cicuta and Enriotti 1979
- General $N_{c}$ solution for two gluons by Cvitanović, in group theory books, 1984 and 2008, using polynomial equations
- General $N_{c}$ solution for two gluons by Dokshitzer and Marchesini 2006, using symmetries and intelligent guesswork

- For two gluons, there are two octet projectors, one singlet projector, and 4 new projectors, $10, \overline{10}, 27$, and for general $N_{c}$, " 0 "
- It turns out that the new projectors can be seen as corresponding to different symmetries w.r.t. quark and anti-quark units, for example the decuplet can be seen as corresponding to


Similarly the anti-decuplet corresponds to $\frac{1}{2} \otimes \sqrt{12}$, the 27 -plet corresponds to $\overline{112} \otimes \overline{\overline{12}}$ and the 0 -plet to $\frac{1}{\frac{1}{2}} \otimes \overline{\frac{1}{2}}$


$$
\begin{aligned}
& \mathbf{P}^{10}=\frac{1}{2} \underset{\infty}{\infty}+\frac{1}{2 T_{R}^{2}} \infty_{\infty}^{\infty}-\frac{1}{2} \mathbf{P}^{8 a} \\
& \mathbf{P}^{\overline{10}}=\frac{1}{2} \underset{\infty}{\infty}-\frac{1}{2 T_{R}^{2}} \infty \underbrace{\infty}_{\infty}-\frac{1}{2} \mathbf{P}^{8 a} \\
& \mathbf{P}^{27}=\frac{1}{2} \underset{\infty}{\infty}+\frac{1}{2 T_{R}^{2}} \underset{\infty}{\infty} \prod_{\infty}^{\infty}-\frac{N_{c}-2}{2 N_{c}} \mathbf{P}^{8 s}-\frac{N_{c}-1}{2 N_{c}} \mathbf{P}^{1} \\
& \mathbf{P}^{0}=\frac{1}{2} \underset{\infty}{\infty}-\frac{1}{2 T_{R}^{2}} \cdots \underbrace{\infty}_{\infty}-\frac{N_{c}+2}{2 N_{c}} \mathbf{P}^{8 s}-\frac{N_{c}+1}{2 N_{c}} \mathbf{P}^{1}
\end{aligned}
$$



## New idea: Could this work in general?

On the one hand side

$$
g_{1} \otimes g_{2} \otimes \ldots \otimes g_{n} \subseteq\left(q_{1} \otimes \overline{\mathrm{q}}_{1}\right) \otimes\left(q_{2} \otimes \overline{\mathrm{q}}_{2}\right) \otimes \ldots \otimes\left(q_{n} \otimes \overline{\mathrm{q}}_{n}\right)
$$

so there is hope...
On the other hand...

- Why should it?
- In general there are many instances of a multiplet, how do we know we construct all?
- Even if such a decomposition would give the new multiplets (which could not be present for fewer gluons) in a unique way, we would have to project out all instances of all "old" multiplets. How do we get them?


Key observation:

- Starting in a given multiplet, corresponding to some $q \bar{q}$
symmetries, such as 10 , from $\sqrt{122} \otimes \sqrt{\frac{1}{2}}$, it turns out that for each way of attaching a quark box to $\frac{112}{12}$ and an anti-quark box to $\overline{\frac{1}{2}}$, to there is at most one new multiplet! For example, the projector $\mathbf{P}^{10,35}$ can be seen as coming from

after having projected out "old" multiplets
- In fact, for large enough $N_{c}$, there is precisely one new multiplet for each set of $q \bar{q}$ symmetries


It turns out that the proof of this is really interesting:

- We find that the irreducible representations in $g^{\otimes n_{g}}$ for varying $N_{c}$ stand in a one to one, or one to zero correspondence to each other! (For each $\operatorname{SU}(3)$ multiplet there is an $\mathrm{SU}(5)$ version, but not vice versa.)
- Every multiplet in $g^{\otimes n_{g}}$ can be labeled in an $N_{c}$-independent way using the lengths of the columns. For example

| $\square$ |
| :--- |
| $\begin{array}{r}\square \\ \vdots \\ Z \\ \square \\ \square \\ \square \\ \hline\end{array}$ |


1


$\oplus$


$\oplus$

$\oplus$


I have not seen this column notation elsewhere... have you?


## Projecting out "old" multiplets

This would give us a way of constructing all projectors corresponding to "new" multiplets, if we knew how to project out all old multiplets. In $g_{1} \otimes g_{2} \otimes g_{3}$, there are many 27 -plets. How do we separate the various instance of the same multiplet?


## Projecting out "old" multiplets

This would give us a way of constructing all projectors corresponding to "new" multiplets, if we knew how to project out all old multiplets. In $g_{1} \otimes g_{2} \otimes g_{3}$, there are many 27 -plets. How do we separate the various instance of the same multiplet?

- By the construction history!


We make sure that the $n_{g}-\nu$ first gluons are in a given multiplet! Then the various instances are orthogonal as, at some point in the construction history, there was a different projector! (More complicated for multiple occurrences...)


## Construction of 3 gluon projectors

We start out by enumerating all projectors in $\left(8_{1} \otimes 8_{2}\right) \otimes 8_{3}$

- Starting in a singlet, the result is trivial $1_{12} \otimes 8_{3}=8_{123}$
- If we start in an octet $8_{12}, 8_{12} \otimes 8_{3}$ is known from before:

$\oplus$


10


- The 3 g multiplets from (anti-) decuplets
$\qquad$
10
$\otimes$

$\oplus$


$\oplus$
N
$\vdots$
$\vdots$
$\vdots$
$\oplus$

$p_{i}$
$i$
$Z$
$i$
0
0

$\otimes$


$\oplus$

$\oplus$

$\oplus$


$$
\begin{aligned}
& \because N \\
& 1 \\
& Z_{1} Z_{1}
\end{aligned}
$$


$\oplus$


$$
\begin{aligned}
& r N_{1}^{r} \\
& Z_{0}^{0} \\
& Z_{1} N-1
\end{aligned}
$$

$$
\begin{aligned}
& 17 \\
& 1 \\
& z_{1} \\
& 0
\end{aligned}
$$

0


- The 3 g multiplets from 27- and 0-plets

$\oplus$

$\oplus$


$\stackrel{-1}{4}$
$z^{\prime} Z_{1}^{\prime}$
$\oplus$
0
O
(8)

$\substack{v \\ 1 \\ Z_{1} \\ 0 \\(10)}$




$\oplus$


$\oplus$
0

- Construct projectors corresponding to "old" multiplets
- Construct the tensors which will give rise to "new" projectors

- From these, project out "old" multiplets

$$
\mathbf{P}^{10,35} \propto \mathbf{T}^{10,35}-\sum_{m \subseteq 10 \otimes 8} \mathbf{P}^{m} \mathbf{T}^{10,35}
$$

$\rightarrow$ "new" projectors


- Calculations are done using a mathematica package, ColorMath
- Separate publication planned this autumn
- Intended to be an easy to use mathematica package for color summed calculations in QCD, $S U\left(N_{c}\right)$

In[1]]:= Get ["/data/Documents/Annatjobb/Color/Mathematica/ColorMathv5.m"]

$\ln [3]:=$ Amplitude Conjugate [Amplitude / . g $\rightarrow$ g2] / / CSimplify / / Simplify
$\operatorname{Out}[3]=\frac{\left.\left(-1+\mathrm{N}_{\mathrm{C}}^{2}\right) \text { (Conjugate }[\mathrm{S}]\left(-\mathrm{T}+\mathrm{S} \mathrm{N}_{\mathrm{C}}\right)+\text { Conjugate }[\mathrm{T}]\left(-\mathrm{S}+\mathrm{T} \mathrm{N}_{\mathrm{C}}\right)\right) \mathrm{T}_{\mathrm{F}}^{2}}{\mathrm{~N}_{\mathrm{C}}}$


- In this way we have constructed the projection operators onto irreducible subspaces for $3 g \rightarrow 3 g$
- There are 51 projectors, reducing to 29 for $\operatorname{SU}(3)$
- From these we have constructed an orthogonal (normalized) basis for the $6 g$ space, by letting any instance of a given multiplet go to any other instance of the same multiplet. For general $N_{c}$ there are 265 basis vectors. Crossing out tensors that do not appear for $N_{c}=3$, we get a minimal basis with 145 basis vectors.

There's also a reduction from charge conjugation


## Number of projection operators and basis vectors

In general, for many partons the size of the vector space is much smaller for $N_{c}=3$, compared to for $N_{c} \rightarrow \infty$

| Case | Projectors $N_{c}=3$ | Projectors $N_{c}=\infty$ | Vectors $N_{c}=3$ | Vectors $N_{c}=\infty$ |
| :---: | :---: | :---: | :---: | :---: |
| $2 \mathrm{~g} \rightarrow 2 \mathrm{~g}$ | 6 | 7 | 8 | 9 |
| $3 \mathrm{~g} \rightarrow 3 \mathrm{~g}$ | 29 | 51 | 145 | 265 |
| $4 \mathrm{~g} \rightarrow 4 \mathrm{~g}$ | 166 | 513 | 3598 | 14833 |
| $5 \mathrm{~g} \rightarrow 5 \mathrm{~g}$ | 1002 | 6345 | 107160 | 1334961 |

Number of projection operators and basis vectors for $N_{g} \rightarrow N_{g}$ gluons without imposing projection operators and vectors to appear
in charge conjugation invariant combinations


- The size of the vector spaces asymptotically grows as an exponential in the number of gluons $/ q \bar{q}$-pairs for finite $N_{c}$
- For general $N_{c}$ the basis size grows as a factorial

$$
N_{\text {vec }}\left[n_{q}, N_{g}\right]=N_{\text {vec }}\left[n_{q}, N_{g}-1\right]\left(N_{g}-1+n_{q}\right)+N_{\text {vec }}\left[n_{q}, N_{g}-2\right]\left(N_{g}-1\right)
$$

where

$$
\begin{aligned}
N_{\mathrm{vec}}\left[n_{q}, 0\right] & =n_{q}! \\
N_{\mathrm{vec}}\left[n_{q}, 1\right] & =n_{q} n_{q}!
\end{aligned}
$$

As the multiplet basis also is orthogonal it has the potential to very significantly speed up exact calculations in QCD!


## Processes with quarks

- We can also construct bases for processes with quarks using the gluon projection operators. To see this we note that a $q \bar{q}$-pair may either be in an octet - in which case we may replace it with a gluon, or in a singlet - in which case we enforce this and use the gluon basis for one less gluon
- In general, having the $n_{g} \rightarrow n_{g}$ projectors we can easily get the bases for up to $2 n_{g}+1$ gluons plus $q \bar{q}$ pairs
- Knowing how to construct the gluon projection operators in general, we thus know how to construct the basis vectors for any number and kind of partons and any order in perturbation theory!



## Conclusions

- We have outlined a general recipe for construction of minimal orthogonal multiplet based bases for any QCD process, arXiv:1207.0609
- On the way we found an $N_{c}$-independent labeling of the multiplets in $g^{\otimes n_{g}}$, and a one to one, or one to zero, correspondence between these for various $N_{c}$
- Number of basis vectors grows only exponentially for $N_{c}=3$
- This has the potential to very significantly speed up exact calculations in the color space of $S U\left(N_{c}\right)$



## ...and outlook

- However, in order to use this in an optimized way, we need to understand how to sort QCD amplitudes in this basis in an efficient way
- ...also, a lot of implementational work remains


## Backup: Some example projectors

$$
\begin{aligned}
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{8 a, 8 a} & =\frac{1}{T_{R}^{2}} \frac{1}{4 N_{c}^{2}} i f_{g_{1} g_{2} i_{1}} i f_{i_{1} g_{3} i_{2}} i f_{g_{4} g_{5} i_{3}} i f_{i_{3} g_{6} i_{2}} \\
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{8 s, 27} & =\frac{1}{T_{R}} \frac{N_{c}}{2\left(N_{c}^{2}-4\right)} d_{g_{1} g_{2} i_{1}} \mathbf{P}_{i_{1} g_{3} i_{2} g_{6}}^{27} d_{i_{2} g_{4} g_{5}} \\
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,8} & =\frac{4\left(N_{c}+1\right)}{N_{c}^{2}\left(N_{c}+3\right)} \mathbf{P}_{g_{1} g_{2} i_{1} g_{3}}^{27} \mathbf{P}_{i_{1} g_{6} g_{4} g_{5}}^{27} \\
\mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,64=c 111 c 111} & =\frac{1}{T_{R}^{3}} \mathbf{T}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,64}-\frac{N_{c}^{2}}{162\left(N_{c}+1\right)\left(N_{c}+2\right)} \mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,8} \\
& -\frac{N_{c}^{2}-N_{c}-2}{81 N_{c}\left(N_{c}+2\right)} \mathbf{P}_{g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}}^{27,27 s}
\end{aligned}
$$



## Backup: Three gluon multiplets



## The importance of Hermitian projectors



The standard Young projection operators $\mathbf{P}_{Y}^{6,8}$ and $\mathbf{P}_{Y}^{\overline{3}, 8}$ compared to their hermitian versions $\mathbf{P}^{6,8}$ and $\mathbf{P}^{\overline{3}, 8}$.
Clearly $\mathbf{P}^{6,8 \dagger} \mathbf{P}^{\overline{3}, 8}=\mathbf{P}^{6,8} \mathbf{P}^{\overline{3}, 8}=0$. However, as can be seen from the symmetries, $\mathbf{P}_{Y}^{6,8 \dagger} \mathbf{P}_{Y}^{\overline{3}, 8} \neq 0$.


## Backup: First occurrence



Table 1: Examples of $S U(3)$ Young diagrams sorted according to their first occurrence $n_{f}$.


## Backup: Gluon exchange

A gluon exchange in this basis "directly" i.e. without using scalar products gives back a linear combination of (at most 4) basis tensors


- $N_{c}$-enhancement possible only for near by partons
$\rightarrow$ only "color neighbors" radiate in the $N_{c} \rightarrow \infty$ limit


