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Invariants for QCD algebra

• Some basics

• Calculation and squaring of amplitudes

• Various bases: Trace bases, DDM bases, Color

flow bases, Multiplet bases

• Calculating using basic group invariants, Wigner

6js and 3js



Motivation

• With the LHC there is an increased interest in the treatment of

color structure for processes with many colored partons

• This is applicable to fixed order calculations as well as parton

showers and resummation

• I will talk about QCD (SU(Nc)), but group invariants for other

groups can be treated similarly
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The QCD Lagrangian

The QCD Lagrangian

L = ψ(i/∂ −m)ψ − 1

4
(∂µA

a
ν − ∂νA

a
µ)

2 + gAaµψγ
µtaψ

−gfabc(∂µAaν)AµbAνc −
1

4
g2(feabAaµA

b
ν)(f

ecdAµcAνd)

contains:

• quark-gluon vertex, ji

µa

= (ta)ij
Here (ta)ij are SU(3) generators and I take the graph to

represent the color structure alone, no igγµ
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• triple-gluon vertex,

a, α

c, γb, β

pa

pc

pb = ifabc

Here we use the convention of reading the indices counter

clockwise in the SU(3) structure constants fabc, and again I

only mean the color structure, no −ig(gαβ(pa − pb)
γ + cyclic)

• four-gluon vertex, here color and kinematic factors are correlated

(so I cannot draw the color structure alone)

= + +

×ig2s(gαδgβγ − gαγgβδ)

a, α b, β

c, γ d, δ
×ig2s(gαδgβγ − gαβgγδ)

= ifaeb if cde + +
×ig2s(gαβgγδ − gαγgβδ)

iface if bed ifaed if cbe

×ig2s(gαδgβγ − gαγgβδ) ×ig2s(gαδgβγ − gαβgγδ)

×ig2s(gαβgγδ − gαγgβδ)

but the color structure is just a linear combination of

triple-gluon vertices
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Generators and structure constants
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with Tr[tatb] = 1
2
δab = TRδ

ab, i.e. TR = 1
2
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The structure constants fabc, defined by

[ta, tb] = ifabctc,

are totally antisymmetric. The non-zero structure constants are

f123 = 1, f147 = f165 = f246 = f257 = f345 = f376 =
1

2
, f458 = f678 =

√
3

2

and structure constants related by permutations.

But the last two slides are the most useless slides of this presenta-

tion...
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Dealing with color space

Due to confinement we never observe individual colors

• We average over incoming colors

• We sum over outgoing colors

• → we sum over the colors of all external partons

• As always in quantum mechanics we also sum over all degrees of

freedom that can interfere with each other → we sum over the

colors of all internal particles

• → We sum over all colors of all particles
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So, if we for example consider

qq → qq
a

b

c

dg
,

(let’s pretend we have different flavors so we only have one Feynman

diagram) we need the color sum

1

3

3
∑

a=1

1

3

3
∑

b=1

3
∑

c=1

3
∑

d=1

∣

∣

∣

∣

∣

8
∑

g=1

(tg)ab(t
g)cd

∣

∣

∣

∣

∣

2

One way of dealing with this sum is to pick a particular representation

of the generators, and sum over 34 ∗ 8 = 648 terms. Luckily there are

better ways...
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The color structures, for example

∑

g

(tg)a b(t
g)c d =

a

b

c

dg
,

A sum over color for

internal lines is always

implicit
we can view as vectors living in some vector space — the overall

color singlet vector space, where outgoing plus incoming colors form

a total singlet. The physical observables are given by summing over

all external colors, i.e., for the interference between two different

color amplitudes Aa,b,c,... Ba,b,c,... we always want

∑

a,b,c,...

(Aa,b,c,...)
∗Ba,b,c,...
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It is easy to convince oneself about that the above sum is a scalar

product on the vector space of total color singlet color structures

with the external indices a, b, c..., i.e.,

〈A,B〉 =
∑

a,b,c,...

(Aa,b,c,...)
∗Ba,b,c,...

→ We can use all our knowledge of vector spaces and scalar products
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Example: If A = (tg)a b(t
g)f c(t

e)d f =
a

b

c

dg

ee
f

, then

〈A|A〉 =
∑

a,b,c,d,e,f,g,h,i

[

(th)a b(t
h)i c(t

e)d i
]∗

(tg)a b(t
g)f c(t

e)d f

=
∑

a,b,c,d,e,f,g,h,i

(th)b a(t
h)c i(t

e)i d(t
g)a b(t

g)f c(t
e)d f

=

amplitudeconjugated amplitude

The first equality holds since the generators are Hermitian, and the

last holds since we always sum over the color of internal lines
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As seen above we can represent the squared amplitude with a

picture. We can also calculate in pictures! To do so we need just a

few rules

• There are Nc possible quark colors

a
= Nc

Nc
∑

a=1

δaa = Nc

• There are Ng = N2
c − 1 possible gluon colors

g

= N2
c − 1

N2

c−1
∑

g=1

δgg = N2
c − 1
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• The generators are traceless

a g
= 0

Nc
∑

a=1

(tg)aa = 0

• Generator normalization

ba
= TR ba Tr[tatb] = TRδ

ab
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• The algebra [ta, tb] = ifabctc ⇒

a

b c

=
1

TR











a

b c

−
a

b c

a










ifabc =
1

TR

[

Tr[tatbtc]− Tr[tbtatc]
]

• The Fierz identity (the completeness relation)

a

b

c

d
g

= TR









a

b

c

d

− 1

Nc

a

b

c

d









(tg)ac(t
g)bd = TR

[

δadδ
b
c −

1

Nc
δacδ

b
d

]

Malin Sjödahl 14



Let’s apply the rules to our example

= TR

To further simplify the color structure we note using Fierz

= TR

(

− 1

Nc

)

= TR

(

Nc −
1

Nc

)

= TR
N2
c − 1

Nc
≡ CF

Giving, for the squared amplitude

= TRC
2
F = TRC

2
FNc
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• In this way we can square any color amplitude and calculate any

interference term. In general we have interference terms

between different Feynman diagrams/color structures, but these

are treated in precisely the same way.

• One way of dealing with color space is to just square the

amplitudes one by one as one encounters them

• Alternatively, we may use any basis (spanning set)
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The most popular bases: Trace bases
• Every 4g vertex can be replaced by 3g vertices:

= + +

×ig2s(gαδgβγ − gαγgβδ)

a, α b, β

c, γ d, δ
×ig2s(gαδgβγ − gαβgγδ) ×ig2s(gαβgγδ − gαγgβδ)

• Every 3g vertex can be replaced using:

a

b c

=
1

TR







a

b c

−
a

b c

a






• After this every internal gluon can be removed using Fierz:

a

b

c

d
g

= TR





a

b

c

d
− 1

Nc

a

b

c

d




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• This can be applied to any QCD amplitude, tree level or beyond

• In general an amplitude can be written as linear combination of

different color structures, like

A B+ + . . .

• For example for 2 (incoming + outgoing) gluons and one qq pair

= A1 + A2 + A3

(an incoming quark is the same as an outgoing anti-quark)

• The above type of color structure can be used as a spanning set,

a trace basis
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These bases have some nice properties

• Conceptual simplicity

• Can be reduced for a given order in perturbation theory, for

example, for tree-level Ng-gluon amplitudes we have (Ng − 1)!

color structures of form

M(g1, g2, . . . , Ng) =
∑

σ∈SNg−1

Tr(tg1tgσ2 . . . t
gσNg )A(σ)

=
∑

σ∈SNg−1

g1 gσ2
gσNg

. . .
A(σ),

whereas for higher orders we also have products of traces.
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• Taking the leading Nc limit is trivial and results in a flow of

colors

• The basis vectors are orthogonal when Nc → ∞
• The effect of gluon emission is easily described:

= −→

We get just one new basis vector if the emitter is an

(anti-)quark and two if the emitter is a gluon

• So is the effect of gluon exchange
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For these reasons trace bases are commonly used:

• MadGraph (fixed order calculations)

(J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer,

JHEP 1106 (2011) 128, 1106.0522)

• ColorFull (C++ code for color space, more later)

(M.S., Eur.Phys.J. C75 (2015) 5, 236, 1412.3967, hepforge

since 2013, http://colorfull.hepforge.org/)

• Nc = 3 parton showers by M.S. and S. Plätzer, and by D. Soper

and Z. Nagy

(D. Soper and Z. Nagy JHEP 0709 (2007) 114, 0706.0017,

S. Plätzer and MS, JHEP 07(2012)042, 1201.0260,

S. Plätzer, MS, J. Thorén, JHEP 1811 (2018) 009, 1809.05002)

• Resummation

(M.S., JHEP 0909 (2009) 087, 0906.1121,

E. Gerwick, S Höche, S. Marzani, S. Schumann, JHEP 1502

(2015) 106, 1411.7325)
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ColorMath

• I have written a Mathematica package, ColorMath,

(Eur. Phys. J. C 73:2310 (2013), 1211.2099)

• ColorMath is an easy to use Mathematica package for color

summed calculations in QCD, SU(Nc)

• Repeated indices are implicitly summed
In[2]:= Amplitude = I f@g1, g2, gD t@8g<, q1, q2D

Out[2]= ä t8g<q1q2 f
8g1,g2,g<

In[3]:= CSimplify@Amplitude Conjugate@Amplitude �. g ® hDD

Out[3]= 2 Nc I-1 + Nc2M TR2

• ColorMath does not automatically construct bases, but given a

basis (constructed by the user) it can calculate the soft

anomalous dimension matrix automatically
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• The ColorMath package and tutorial can be downloaded from

http://library.wolfram.com/infocenter/MathSource/8442/

or www.thep.lu.se/~malin/ColorMath.html
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ColorFull

For the purpose of treating a general QCD color structure (any

number of partons, any order) I have written a C++ color algebra

code, ColorFull, which:

• Automatically creates trace bases for any number and kind of

partons, and to arbitrary order in αs

• Squares color amplitudes in various ways

• Describes the effect of gluon emission, calculates “radiation

matrices”, Ti, which gives the vectors obtained when emitting a

gluon from parton i decomposed in the larger basis
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• Describes the effect of gluon exchange, automatically calculates

soft anomalous dimension matrices

• Is shipped with Herwig++ (≥ 7)

ColorFull can be downloaded from colorfull.hepforge.org,

(M.S., Eur.Phys.J. C75 (2015) 5, 236, 1412.3967)
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There are also drawbacks with trace bases

• Not orthogonal

→ When squaring amplitudes almost all cross terms have to be

taken into account → N2

basis terms

• Overcomplete

For Ng +Nqq > Nc the bases are also overcomplete

• The size of the vector space asymptotically grows as an

exponential in the number of gluons/qq-pairs for finite Nc
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• For general Nc the basis size grows as a factorial

N
vec
[Nq, Ng] = N

vec
[Nq, Ng − 1](Ng − 1 +Nq) +N

vec
[Nq, Ng − 2](Ng − 1)

where

N
vec
[Nq, 0] = Nq!

N
vec
[Nq, 1] = NqNq!

(S. Keppeler & M.S. JHEP09(2012)124, 1207.0609)

• For general Nc and gluon only amplitudes (to all order) the size

is given by Subfactorial(Ng)≈ Ng!/e

• For tree-level gluon amplitudes traces may be used as spanning

vectors giving (Ng − 1)! spanning vectors
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Example: Number of spanning vectors for Ng gluons (without

imposing charge conjugation invariance). These numbers are

representative also for Ng gluons plus qq-pairs.

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

4 8 9 3!=6

5 32 44 4!=24

6 145 265 120

7 702 1 854 720

8 3 598 14 833 5 040

9 19 280 133 496 40 320

10 107 160 1 334 961 362 880

11 614 000 14 684 570 3 628 800

12 3 609 760 176 214 841 39 916 800

(Y. Du, M.S. & J. Thorén, JHEP 1505 (2015) 119, 1503.00530)
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The dimension of the full vector space (all orders) for Nc = 3

Ng Nqq = 0 Ng Nqq = 1 Ng Nqq = 2

4 8 3 10 2 13

5 32 4 40 3 50

6 145 5 177 4 217

7 702 6 847 5 1 024

8 3 598 7 4 300 6 5 147

9 19 280 8 22 878 7 27 178

10 107 160 9 126 440 8 149 318

11 614 000 10 721 160 9 847 600

12 3 609 760 11 4 223 760 10 4 944 920

(M.S. & J. Thorén HEP 1509 (2015) 055, 1507.03814)
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• For tree-level gluon processes, we can get away with the

tree-level color structures giving (Ng − 1)!2 terms when squaring

amplitudes.

• For NLO gluon processes we need more color structures.

• For all order resummation all color structures will appear

→ N2

basis ≈ (Ng!/e)
2 when squaring. On the other hand if we

really want to exponentiate the soft anomalous dimension

matrix this scales as N3

basis ≈ (Ng!/e)
3

• Numbers for processes with quarks are comparable. (For every

gluon you can alternatively treat one qq-pair)

• Hard to go beyond ∼ 8 gluons plus qq-pairs
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DDM bases

• The DDM bases (adjoint bases) are based on the observation

that tree-level gluon-only color structures can be expressed as

M(g1, g2, . . . , gn) =
∑

σ∈SNg−2

ifg1gσ2
i1if i1gσ3

i2 . . . if in−3gσn−1
gnA(σ)

= (−1)Ng

∑

σ∈SNg−2

gσ2 gσ3 gσ(n−1)

. . .

g1 gn

A(σ).

V. Del Duca, L. J. Dixon, and F. Maltoni, Nucl. Phys. B

571(2000) 51-70, hep-ph/9910563
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• In this way we only need (Ng − 2)! spanning vectors

• Charge conjugation symmetry is manifest

• For higher order color structures additional basis vectors are

needed

• These bases have been generalized to processes with quarks by

Melia

T. Melia, Phys.Rev.D88(2013), no. 1014020, 1304.7809

T. Melia, Phys.Rev.D89(2014), no. 7 074012, 1312.0599
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Color flow bases
• One way out is to give up exact treatment of color structure and

run a Monte Carlo over colors

• This is particularly efficient in the color flow basis

• Here the adjoint representation indices are rewritten in terms of

fundamental representation indices and new color flow Feynman

rules are derived (Maltoni, Stelzer, Paul, Willenbrock, Phys.Rev.

D67 (2003), hep-ph/0209271)

• Explicit colors (r, g, or b) are then assigned to the lines, and one

may run a Monte Carlo sum over colors to sample color space

• This is not exact but the color structure treatment is much

quicker ( Comix, T. Gleisberg, S. Hoeche, JHEP 0812 (2008)

039, 0808.3674; S. Plätzer, Eur.Phys.J. C74 (2014) 6, 2907,

1312.2448; S. Prestel and J. Isaacson 1806.10102)
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• quark-gluon vertex,

ji

µa

= igsγ
µ(ta)ij→ igsγ

µδia2δ
a1
j = ji

µ
a2 a1

• triple-gluon vertex,

a, α

c, γb, β

pa

pc

pb = ifabc(−igs(gαβ(pa − pb)
γ + cyclic))

→ 1

TR









a1

b2

a2

b1 c2

c1

−

a1 a2

b1
b2

c2
c1









(−igs(gαβ(pa − pb)
γ + cyclic))

can easily be written in completely symmetric form...
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• four-gluon vertex

= + +

×ig2s(gαδgβγ − gαγgβδ)

a, α b, β

c, γ d, δ
×ig2s(gαδgβγ − gαβgγδ)

= ifaeb if cde + +
×ig2s(gαβgγδ − gαγgβδ)

iface if bed ifaed if cbe

×ig2s(gαδgβγ − gαγgβδ) ×ig2s(gαδgβγ − gαβgγδ)

×ig2s(gαβgγδ − gαγgβδ)

→

ig2s
(

2gαδgβγ − gαγgβδ − gαβgγδ
) 1

TR









a2 b1

c1
c2

a1

d2
d1

b2

+

a2 b1

c1
c2

a1

d2
d1

b2









+[c↔ d] + [b↔ d]
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• Color structure of propagator

∆ab = ba

→
b1

b2

a2

a1 = TR

(

b1

b2

a2

a1 − 1

Nc b1

b2

a2

a1

)

• Similarly the qq-pairs corresponding to external gluons have to

be forced to be in octets when squaring amplitudes

Warning: Conventions differ from those in hep-ph/0209271

Malin Sjödahl 36



Multiplet bases
• QCD is based on SU(3) → the color space may be decomposed

into irreducible representations

• Orthogonal basis vectors corresponding to irreducible

representations may be constructed, in may different ways...

α1 α3α2
α1 α3α2 α4

α1

α3

α2

α4

• The construction of the corresponding basis vectors is

non-trivial, and a general strategy was presented relatively

recently, (S. Keppeler & M.S. JHEP09(2012)124, 1207.0609,

generalized by MS and J.Thorén in 1809.05002)

• With general, I mean general: general number of quarks and

gluons, general order in αs and general Nc
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• In this presentation I will – for comparison – often talk about

processes with gluons only, however, processes with quarks can

be treated similarly

• The gluon basis vectors are of form

α1 α2

and can thus be characterized by a chain of representations

α1, α2, ... (In principle we have to differentiate between different

vertices as well)

• These vectors are orthogonal (→ minimal) by construction
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For many partons the size of the vector space is much smaller for

Nc = 3 (exponential), than for Nc → ∞ (factorial)

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

trace bases LO trace bases

4 8 9 3!=6

5 32 44 4!=24

6 145 265 120

7 702 1 854 720

8 3 598 14 833 5 040

9 19 280 133 496 40 320

10 107 160 1 334 961 362 880

Number of basis vectors for Ng gluons without imposing vectors to

appear in charge conjugation invariant combinations
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... but the real advantage comes when squaring as the multiplet

bases are orthogonal and the trace bases are not

Ng Vectors Nc = 3 Vectors Nc → ∞ LO Vectors Nc → ∞

trace bases LO trace bases

4 8 (9)2 (6)2

5 32 (44)2 (24)2

6 145 (265)2 (120)2

7 702 (1 854)2 (720)2

8 3 598 (14 833)2 (5 040)2

9 19 280 (133 496)2 ∼ 10
10 (40 320)2 ∼ 10

9

10 107 160 (1 334 961)2 ∼ 10
12 (362 880)2 ∼ 10

11

Number of terms from color when squaring for Ng gluons without

imposing charge conjugation invariant combinations
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• Multiplet bases can potentially speed up exact calculations in

color space very significantly, as squaring amplitudes becomes

much quicker

• But before squaring, amplitudes must be decomposed in

multiplet bases

• How quickly can amplitudes be expressed in multiplet bases?
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Decomposing color structure in
multiplet bases

• One way of decomposing color structure into multiplet bases

would be to simply evaluate the scalar product between each

possible Feynman diagram and each possible vector as we have

seen in the first half of this talk.

• The problem is that this scales very badly, a factorial from the

number of diagrams, an exponential from the number of basis

vectors and another (growing) factor from each single scalar

product evaluation

• → no way

• We need a better strategy
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Group invariants!
• Fortunately there is one: Any group invariant quantity can be

evaluated using Wigner 3j and 6j coefficients, respectively:

α

β

γ
α

β
γ

δ

ζη

• For example

=TR(N
2
c − 1) =2T 2

RN
2
c (N

2
c − 1)

Using standard normalization of vertices

• Using the multiplet basis we can evaluate the needed 3j and 6j

coefficients for higher representations
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• Furthermore, only a small number of such coefficients are

needed, up to NLO

Ng 4 6 8 10 12

Nc = 3 29 120 272 476 733

Nc ≥ Ng 44 389 2 023 8 077 27 631

and they can be evaluated once and for all

(Numbers could be slightly reduced by additional symmetries,

and smart choices of vertices)

• As a test case, all coefficients needed for evaluation of processes

with up to 6 gluons or 8 (quarks + antiquarks) have been

explicitly calculated (M.S. & J. Thorén, JHEP 1509 (2015) 055,

1507.03814; 1809.05002)
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Decomposing color with
6j and 3j coefficients

As an example consider the color structure of the Feynman diagram:

=
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The scalar product between the color structure and a basis vector is

given by:

A(α1, α2, α3) =

α1 α2 α3

=

=
α3 α1

α2
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To simplify the color structure we need a few rules:

• The completeness relation

µ

ν
=
∑

α

dα

ν

α

µ

µ

ν

µ

ν

α

• and the vertex correction relation

α

β

γ
δ

ǫ

ζ =
∑

a

ǫ

γ

α

δ

ζ

βa

γ
α

β

aa

γ

β

α

a
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Some other useful relations are:

• two vertex loops give just a constant

δα
γ

β

=

γ

δ

β

dα α δ

• dimension relation

α = dα
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In our color structure we note that we have a vertex correction:

A(α1, α2, α3) =
α3 α1

α2

In our case the vertex correction is:

α3

α2
=
∑

a

α3

α2
a

α2
a a

α2

a

Where the sum runs over vertices a connecting the three representa-

tions α1, α3 and 8, and contains at most 2 terms.
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Using the vertex correction results in:

A(α1, α2, α3) =
α3 α1

α2

=
∑

a

α3

α2
a

α2
a a

α1

α2

a
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Now there is no trivial color structure, but we can pick any loop...

A(α1, α2, α3) =
∑

a

α3

α2
a

α2
a a

α1

α2

a

and use the completeness relation

µ

ν
=
∑

α

dα

ν

α

µ

µ

ν

µ

ν

α

to remove it
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Applying the completeness relation and removing vertex corrections:

α2

α1

−

−
−

−

a
=
∑

ψ1

dψ1

ψ1

α2

α2

α1

−

− −

−ψ1

α2
a

=
∑

ψ1

dψ1

ψ1

α2

∑

b

ψ1

α2
−

−

b

a

ψ1b
b

∑

c

α1
ψ1

−
−

α2

c

ψ1c
c

ψ1

b c
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Removing the 4-vertex loop we get:

A(α1, α2, α3) =
∑

a

α3

α2
a

α2
a a

α1

α2

a

=
∑

a

α3

α2
a

α2
a a

∑

ψ1,b,c

dψ1

ψ1

α2

ψ1

α2
−

−

b

a

ψ1b
b

α1
ψ1

−
−

α2

c

ψ1c
c ψ1
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The final expression is:

A(α1, α2, α3) =
∑

a,ψ1,b,c

dψ1

α3

α2
a

α2
a a

ψ1

α2
−

−

b

a

α1
ψ1

−
−

α2

c

ψ1
−

ψ1b
b

ψ1c
c

ψ1

α2

• Knowing the 3j and 6j Wigner coefficients we can immediately

write down the scalar product with any basis vector!

• This only has to be done once for each Feynman diagram, and

the scalar product with most basis vectors vanishes

• We only need to care about non-zero projections, we could list

the non-zero 6j-coefficients

• Each sum over representations contains at most 8 terms for

SU(3), at most N2
c − 1 for SU(Nc)
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A parton shower perspective

• In a parton shower we start with some amplitude which we can

assume that we have decomposed in the multiplet basis

Amp =
∑

α1,α2,α3

cα1,α2,α3

α1 α3α21

3

5

2

4

6
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• Knowing the decomposition for Ng − 1 gluons, how can we

decompose the Ng gluon amplitude?

α1 α3α21

3

5

7

2

4

6

=
∑

β1,β2,...

c̃β1,β2,...

β1 β3 β41

3

5

7

2

4

6

β2

• Scalar products? Too slow!
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Let one of the gluons emit a new gluon:
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To decompose the affected side, we may insert the completeness

relation repeatedly:

The representations on the other side (here right) don’t change
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Consider the affected side:
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Inserting completeness relations we get a sum of terms of form:

dβ2
dβ3 ...

β3 β4β2α1

What we have here are just vertex corrections which can be rewritten

in terms of 3j and 6j coefficients
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Giving us a sum of terms of form:

...

β3 β4β2α1

i.e., knowing the 3j and 6j symbols we can write down the resulting

vectors

Malin Sjödahl 61



• By inserting the new gluon ”in the middle” in the basis we

guarantee that the emitted gluon need never ”be transported”

across more than ∼ half of the reps

• Typically we get only a small fraction of all basis vectors in the

larger basis:

Ng 5→6 6→7 7→8 8→9 9→10

Nc = 3 0.094 0.027 0.012 0.0032 0.0014

Nc ≥ Ng 0.071 0.014 0.0054 0.00092 0.00032

(Y. Du, M.S. & J. Thorén, JHEP 1505 (2015) 119, 1503.00530)
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Consider the sum of all terms from all emissions (all emitters and all

vectors) and compare to the number encountered when squaring a

tree-level amplitude

Ng Fraction (Nc = 3) All terms (Nc = 3) (# tree vectors)2 (any Nc)

5→6 0.094 2 184 (120)2

6→7 0.027 16 372 (720)2

7→8 0.012 212 914 (5 040)2

8→9 0.0032 1 758 620 (40 320)2 ∼ 10
9

9→10 0.0014 25 407 328 (362 880)2 ∼ 10
11

Numbers will be somewhat reduced by clever vertex choices, and non-

general linear combinations
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Loops?

• Tree level color treatment can be treated as in the shower case

above: we have some color structure and add a parton

• What about loops?

• Well: Taking a color structure and exchanging a gluon between

two legs, corresponds to a linear map in color space from the

color basis in question for that number of partons to itself. This

can be described by a matrix Color correlator, soft anomalous

dimension matrix

• This matrix can be calculated in a way similar to the gluon

emission case

• The scaling is not quite as good, but rather comparable to the

case of having one more parton, but this is a thumb rule for LO

vs. NLO in general
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Conclusion

• QCD color structure can — due to confinement — always be

dealt with in a purely diagrammatic way, using group invariant

quantities

• In this presentation, I have argued that multiplet bases can be

used and I have described how to color structure can be treated

using group invariants, Wigner 3j and 6j coefficients, which can

be calculated once and for all

• In multiplet bases the decomposition step – not the squaring

step – is the hard step, but overall, for example in parton

showers or recursion, there are fewer terms to keep track of
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Outlook

• What is needed is the 6js for many partons

• I am confident that high enough multiplicity for the method to

be beneficial can be reached

• With present strategies, I am confident that we could go to 7

gluons plus qq-paris, perhaps to 8 and possibly to 9

• For example, the parton shower that me and Simon worked on

would be speeded up by this method

• This could remove the color squaring step from the list of bottle

necks

• What is needed is also a general and accessible implementation

Thank you for your attention!
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Backup: Gluon exchange

A gluon exchange in this basis “directly” i.e. without using scalar

products gives back a linear combination of (at most 4) basis tensors

=

=

=

−

−

−

− 0=
N
c

+
canceling N  −
suppressed
terms

c

+

canceling N  −

suppressed

terms

c

Fierz

Fierz

2 2

1

2

1

2

__

_

2

• Nc-enhancement possible only for near by partons

→ only “color neighbors” radiate in the Nc → ∞ limit
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Backup: Nc-suppressed terms

That non-leading color terms are suppressed by 1/N2
c , is guaranteed

only for same order αs diagrams with only gluons (’t Hooft 1973)

2

= = TR

= TR = TR CF = TR CF Nc = TR TR
N2
c−1
Nc

Nc ∝ N2
c

= =

= TR −TR
Nc

− TR
Nc

CF Nc = 0 − TR TR
N2
c−1
Nc

∼ Nc= TR

∗
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Backup: Nc-suppressed terms

For a parton shower there may also be terms which only are

suppressed by one power of Nc

= =

∗

= TR
−TR
Nc

Is 0 without emission, with ∼ N2
c

did not enter in any form,

genuine ”shower” contribution

Is ∼ Nc without emission, with
∼ N2

c ”included” in shower,

contribution from hard process

The leading Nc contribution scales as N2
c before emission and N3

c

after
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