
Active Surface Models for Brain ImagingMattias Ohlsson, Peter Toft, Lars Kai Hansen, and Finn �Arup NielsenDepartment of Mathematical Modelling,Technical University of Denmarkmo,pto,lkh,fn@imm.dtu.dkABSTRACTThis paper presents a generic approach for surface modelling of 3D objects from volumedata. Our strategy is to shape a closed surface of connected triangles to match theedge of the object. The adaptive strategy we suggest invokes minimisation of an energyfunction containing a set of individually weighted terms re
ecting a set of desired goals.From the closed surface of triangles we are able to do e�cient 3D visualisation aswell as perform quantitative measurements within the object. The framework is verygeneral and applicable in many research areas, and we show the viability of the approachin the context of medical imaging.1. IntroductionIdenti�cation and segmentation of a 3D object measured indirectly by volumetricdata, i.e., without a physical signal, like re
ections etc. from the surface itself, is arecurrent inversion problem in many areas of science. While it is relatively easy forhumans to spot and identify an object from, e.g., images of the individual slices ordirectly using volume rendering techniques, modern acquisition techniques routinelyproduce data sets with hundreds of slices, hence, automatic procedures are urgentlyneeded. Furthermore, automatic procedures can potentially lead to more consistentquanti�cation. The success that humans have in performing segmentation tasks is duemuch to the fact that we use a priori forward information, such as e.g. closed boundariesor a speci�c known form when locating the structure. Automatic procedures shouldalso incorporate a priori information to obtain good performance.A very popular group of methods that supports inclusion of a priori in-formation is the so called active contours or active surface methods that canbe described as physically-based deformable models [Terzopoulos and Witkin, 1988,Terzopoulos et al., 1988]. In active surface models the surfaces deform themselvesunder the action of internal and external forces. The a priori information is included bymeans of an initial shape and position and topological constraints such as e.g. closedsurfaces.
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Fig. 1: The closed set of triangles,where the positions of the vertexpoints are iterated to match the edgeof the object, in this case an ellip-soid. Fig. 2: The displacement of a singlevertex will only in
uence the connec-tions to its surrounding triangles.Examples of such active surface algorithms are given in [Cohen and Cohen, 1993]focusing on open surfaces used to segment Magnetic Resonance (MR) images. Theirmethod is signi�cantly enhanced by the use of a Finite Element Method in theminimisation process. In [Schlesinger et al., 1996] the boundaries of the objects areconstrained further by using topological closed geodesic surfaces, that deform underan the potential from an image. They report good results for segmentation of majorstructures in the human brain.Another direction is taken in [Collins et al., 1995], where the task again is to locateobjects of interest in brain images. Their method requires a completely segmentedbrain (a), where each volume-element (voxel) has a neuroanatomical label. In orderto segment another brain (b) one can recover the non-linear spatial transformation�eld that optimally maps the intensity �eld from a to b. Each of the labels from ais now mapped onto b, thus segmenting b. The segmentation problem has become aregistration problem.The approach taken in this paper follows the active surfaces idea of having an initialclosed surface estimate that matches an object of interest using an energy minimisationprocess. Key features of our method are:� A 
exible surface description that puts almost no restriction on the closed formon the surface.� A very general energy formulation that can be custom-made for a wide range ofobjects/datasets.� The resulting surface can easily be used for powerful 3-D visualisation or subjectto further analysis such as quantitative measurements within the object.As illustrated in Fig. 1 the boundary of the anatomical object of interest will berepresented by a mesh of triangles. While we can consider both open and closedsurfaces, we here con�ne ourselves to closed surfaces. Each vertex in the mesh willhave a set of neighbouring vertices that induce a set of triangles around the vertex. All2



movements and adjustments of the mesh are performed at the vertex level. Note thatthe displacement of a single vertex will only in
uence its surrounding triangles (seeFig. 2). Iterating on all vertex positions will move the mesh to the object of interest,as shown schematically in Fig. 3.
Fig. 3: Iterations on the vertex positions will move the whole mesh, so that thetriangles will track the object surface.2. Solution StrategyThe algorithm presented below will require an initial surface (boundary estimate). Itis assumed that this estimate is not to far from (in a Eucledian distance sense) thetrue underlying boundary. The initial estimate could be the result of a rough manualsegmentation, or of a registration based segmentation: having a segmented referencebrain where the boundary of the object of interest in known. If, in addition, the non-linear spatial transformation �eld that register the two volumes is known one can mapthe reference object-surface onto the current volume, thereby providing the surfaceestimate [Ohlsson et al., 1997].The adaptation of the initial surface will be performed as an energy minimisa-tion task. This energy function consists of several terms, each representing di�erentproperties of the surface. Etotal =Xk �kEk ; (1)where k sums over the possible energy terms - listed below - and �k is a weight param-eter, that determines the individual weighting1. By this construction it is possible tocustomise energy functions for various anatomical regions or objects.The following table lists a set of symbols will be used throughout this paper:i The vertex number, i.e., number of the triangle corner.j The triangle number.Ni Number of triangles.Nj Number of vertices.V (x) The value of the volume at x.t iteration number.Here follows a list of possible energy terms that can be used to construct the energyfunction. It should be emphasised that this is not an exhaustive list. Some volumetricdata may require special attractive forces or smoothing regulators not listed here.1In practice we are only using K � 1 weights since a rescaling will put one weight to unity. K isthe number of energy terms. 3



Smoothing As shown in Fig. 4 a smoothing term minimises the squared distance tothe centre of mass of the vertex neighboursESmooth = NiXi �xi � xN(i)�2 (2)where xN(i) is the mean neighbour vertex position. This energy term will try to keepsmoothness. Note that this energy term implies a shrinking e�ect, because the globalminimum of this energy term is found where all vertex positions are equal.Reference Mesh Inertia One can add an term that prevent large movements awayfrom the initial vertex positions. This is illustrated in Fig. 5.EInertia = NiXi (xi � xi;org)2 (3)where xi is the current position of vertex point i and xi;org is the original position ofthe same vertex point. And if the particular energy weight �Inertia is set su�cientlyhigh this term can prevent severe divergence of the vertex positions.
Fig. 4: The smoothing energy termwill pull the vertex point to the centreof mass of the neighbours. Fig. 5: The reference energy term willtry to pull the vertex positions towardsthe initial positions.Potential The surface must be adapted to the volume V , and the simplest way is touse the square magnitude of the gradient. In contrast to the other forces presented thispotential energy makes the link to the data volume, and this energy term will trackedges in the volume. As indicated in Fig. 6 the simplest form of the energy functionsamples the potential at the vertex positions.EGradient = NiXi jSwrV (xi)j2 (4)where V (x) is the volume that contains the object to be �tted and Sw is a spatialsmoothing operator with a characteristic distance of w. The smoothing has to be usedin order to extend a very sharp edge, i.e. gradient, so that it can be sensed in theareas of the current vertex positions. If the initial estimates of the vertex positions arevery bad then S should do much smoothing. Similar to simulated annealing and mean4



�eld annealing the smoothing parameter w can be lowered (cooled) as a function ofthe iteration number t in order to get better estimates at the end.Note that a very coarsely sampled mesh compared to the sampling distance of thevolume will suggest that Eq. 4 can be replaced byEPotential = NjXj 1Aj Z Z d
jjSwrV (x)j2 (5)where the integration over 
j normalised with the triangle area Aj is the averagesquared gradient over triangle j. In practice the triangle must be sampled in severalpositions on the triangle and then averaged. This way of implementing the gradientterm will also make it possible to compute the variance of the squared gradient, wherea low variance indicates that the mesh is su�ciently �ne, and a high value will signalthat the triangle should be split in minor triangles (this is discussed in Subsection 3.1.Template Matching A very useful and general energy term is the template matchingterm, where availability of a reference volume V (ref)(x) is assumed with an associatedmatched surface with vertices x(ref)i . The neighbourhood around x(ref)i is then matchedto the neighbourhood around the same vertex number i in the current volume:ETemplate = NiXi X�xF (V (ref); V ) (6)where the function F might be chosen asF (V (ref); V ) = (V (ref)(x(ref)i +�x)� V (xi +�x))2 (7)and the sum over �x sums over all voxels within a prede�ned distance, either radiallyor in a rectangular region, and x(ref)i is vertex position i on the reference mesh. Thefunction F may implement the average distance within the template or alike.This energy term will force the mesh to search for areas in the volume that resemblesthe reference volume at the corresponding vertex positions, and we expect this energyterm to be very relevant for person to person studies.
Fig. 6: The gradient attraction termwill try to pull the vertex to areas ofhigh gradients. Fig. 7: The template matching termwill try to search for a similar neigh-bourhood to a reference volume withan associated mesh.5



3.Minimisation of the Energy FunctionWe have chosen to minimise the energy in an iterative fashion by optimising oververtex points only. It is natural to move vertex points and not triangles since, usually,all energy terms can be written as a sum over vertex points.In principle it is possible to compute analytical derivatives of the energy functionwith respect to the vertex positions. However, we choose to use a simpler approach,namely to compute approximations to the gradient of the energy function by computingthe di�erence in the energy when moving one vertex position a small step. It shouldbe pointed out that moving a vertex point will only in
uence the triangles aroundthe vertex point. This will signi�cantly lower the computational complexity whencomputing the gradient for the energy function using the approximation scheme below.rEi � 0B@ 1��x [E(xi + ��x)� E(xi)]1��y [E(xi + ��y)� E(xi)]1��z [E(xi + ��z)� E(xi)] 1CA (8)where �x is the sampling distance in the volume in the x direction (likewise with �yand �z) and � is a weight between 0 and 1.With this approximation to the gradient we can, e.g., use a simple steepest descentalgorithm to minimise the energy function, by updating the vertex position accordingto x(t+1)i = x(t)i � �trEi (9)An alternative to the steepest descent algorithm is simulated annealing[Kirkpatrick et al., 1983], where an alternative to the current vertex position is ac-cepted if it lowers the energy, and accepted with a certain probability if the newposition implies an increase in the energy.Regardless of the way that we actually choose the new vertex position in a certainiteration we will have to choose which vertex number to change. Two strategies aredirectly applicable, namely linear addressing the vertex points i(t) = t MOD Ni, whereMOD is the modulus operator. The other strategy is to permute the set of indicesrandomly, so in contrast to choosing the vertex point at random in each iteration it isguaranteed that each vertex point has been updated once every Ni iterations. Anothermore demanding strategy would be to rank the vertex position after the size of thegradient jrEj and update the vertex with the maximal gradient in each iteration.3.1. Additional Surface ManipulationIn order to accurately represent the surface of an object the number of vertices andtriangles cannot be too small. Due to non-convex and high curvature regions of theobject some parts of the mesh may need further re�nements. As shown in Fig. 8 twooperations may be used to re�ne the mesh, one local and one global:(A) The global operator will split each triangle into 4 new ones by connecting themiddle point of its three edges.(B) For the local operation a new vertex is placed on a given edge thereby splittingthe two triangles that shares the edge. The location of the new vertex is chosen so thatthe two child triangles will have equal area.6
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Fig. 8: Examples of mesh re�nement.A problem that can occur is that triangles might collapse as shown in Fig. 9. If thedistance between two neighbour vertices is much less than the distance between voxelsthen the vertices should be connected and two triangles should be removed.
Fig. 9: The distance between two vertices becomes very small and they are replacesby one vertex point. 4. A Medical Imaging ExampleIn Fig. 11 is shown an initial estimate of a mesh that should match the outer edge of anMRI volume. It has been based on a (bad) hand segmentation of the individual slices.The surface consists of 3201 vertices that builds 6398 triangles. The energy used forthis example is a sum of two terms,ETotal = �1Xi SwjrV (xi)j2 + �2Xi �xi � xN(i)�2 : (10)Based on manually tuned parameters for the weights �1 and �2 and using 300 iterations,requiring approximately 170 seconds on a Pentium 133 MHz Linux machine, the �nalmesh shown in Fig. 12 was obtained. Fig. 10 shows the total energy as a function of thenumber of full iterations, i.e., one iteration equals one update of all the vertex points.The mesh during the optimisation can be seen in Fig. 13, and additional examplesand a VRML2 object containing the mesh for all iterations of the same dataset can befound at http://hendrix.imm.dtu.dk/geo7
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Fig. 10: The total energy as a function of the number of full iterations.

Fig. 11: Initial surface mesh. Fig. 12: Final surface mesh.
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Fig. 13: Adaptation of the surface mesh to the outer skull of an MR volume of thebrain.
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