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Abstract:
A cluster algorithm for noisy data distributions is presented. It minimizes an error function using a

deterministic annealing procedure. Phase transitions occur during the annealing as large clusters split into
smaller ones. Critical “temperatures” corresponding to these transitions are estimated in order to make
the annealing as efficient as possible. The approach is successfully tested on data sets containing up to 10

clusters contaminated with 100% noise.
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1 Introduction

An important problem in pattern recognition and computer vision is the detection of
clusters in the presence of noise. From a given observed data distribution one should
replace all data points by a set of representative vectors or cluster centers such that the
information loss is minimized. Very often, none or very limited a priori information about
the distribution is available. Also, in many real-world applications the observed distribution
can be very noisy, in which case some data points should not be assigned to any cluster
at all. If the underlying distribution has a known parametric form, standard methods like
Bayesian learning [1] can be applied. However, in cases where no such prior information is
available alternative non-parametric methods must be used. One class of such methods are
algorithms that minimize a given error function (or distortion measure). The well-known
k-means clustering algorithm [2] is such an example.

The algorithm derived in this paper minimizes an error function that is suitable for data
distributions containing a lot of noise. It is inspired by a method used for track finding in
high energy physics [3, 5] where a set of deformable templates are adjusted to match real
tracks represented by the data set. The cluster problem can be viewed as a special case of
the track finding problem where each deformable template now represents possible cluster
centers matching the data set. The algorithm converges using a deterministic annealing
procedure, which corresponds to minimizing the free energy of a Boltzmann distribution
of the error function. Related algorithms using statistical mechanics as a tool for the
optimization procedure in clustering are found in refs. [6, 7, 8, 9, 10].

The main results in our approach are:

o The error function allows for unassigned data points thereby neglecting data points
corresponding to noise. The amount of noise points the algorithm allows for is gov-
erned by the parameter A which can be interpreted as the square of a width of a zero
neuron collecting noise points.

o Phase transition properties of the algorithm are discussed and critical temperatures
are derived for clusters splitting in a hierarchical way.

e The solution quality is not sensitive to the number of initial clusters K.

e Numerical studies on simulated data shows good solution quality for problem sizes up
to 5000 data points with a 100% noise level.



2 The Algorithm

The problem is to replace a data set {x;|[¢ = 1,...N} by a set of representative vectors
{y.la = 1,..., K}, such that the information loss is minimized. If the data contains no
noise the above objective can be achieved by minimizing the distortion error

1N
E(Y) = ﬁZmin(Mw), (a=1,...,K) , (1)
i=1
where Y = (y1,...,Yk) and M;, is a distortion measure between data point x; and cluster

center y,. There are many possible choices for M;, [9]. Because of simplicity M;, is in
what follows taken to be the half squared Euclidean distance between x; and y,,

1
Mia = §|Xz‘ ~val” (2)
On the other hand, if the data contains noise that should be ignored, then E’is modified

according to [3, 4, 5]

E({5.},Y) Z Z SiaMia + A Z (Z Sia — 1) , (3)

=1 a=1 =1 \a=1

where S;, 1s a logical decision unit such that S;, = 1 if data point 7 is assigned to cluster
a and zero otherwise. The parameter A imposes a penalty if point ¢ is not assigned to
any cluster center a. In order to allow for possible noise points the matrix S, with matrix
elements S;,, 1s subject to the constraint

K
ZSiazloIO V. (4)

a=1

In this way the parameter A governs the amount of noise the algorithm allows for.

When minimizing F in eq. (3) subject to the constraint of eq. (4), fluctuations are
introduced into the system using simulated annealing [11] where the system is allowed to
thermalize for a sequence of temperatures T,, > T,,_1 > ... > T according to the Boltzmann
distribution

1
P({Sza,},Y) _= Ee_ﬂE({Sia},Y) , (5)
where 8 = 1/T and Z is a normalization constant, the so-called partition function.

In order to obtain the marginal probability distribution Pp(Y) we must sum P({Si.},Y)
over all matrices S that satisfies the constraint eq. (4). Doing this (for details see appendix
A) we end up with

1
Pu(Y) = Ze—ﬂEeff(Y) : (6)



where the effective error E.g is introduced as

___“l al -BA = —BM;q
Eg(Y) = 3 Z:log (e P 4 2_: e ) . (7)

At a given temperature (1/43), the most probable configuration according to eq. (6) is
given by the minima of E.g. Using a gradient descent method to minimize E.g one gets
the updating rule

Vo — (Y)=y.—€eV.Eypg=
= Y + EZ I/ria(x'i - Ya) ) (8)

where € is the step size and the Potts neuron V,, is given by
e—%mxi—yﬂz

e 1Y, e~ 301X~y ?

I/':'a = (9)
Eq. (8) is easy to interpret. Each cluster center y, takes small steps towards signal points
x; with a relative strength given by V;,. The latter is bounded by 0 < V;, < 1 and has the

natural interpretation, V;, = < S;, >g, as the thermal average of the binary assignment
variable S;;,.

The role played by the parameter A can be seen by rewriting V;, as

1
- e_ﬂ(A—Mia) _I_ Eb e—,@(Mib—Mia) . (]‘0)

Via

Figure 1 shows V;, as a function of M;, for three different values of 8 and for the special
case of A =1 and My = M;, (Vb). If M;, < A then V;, —» 1/K as 8 — oo, on the other
hand if M;, > A then V;, — 0 as 8 — oo. In general we can interpret A as a border for noise
rejection. This border is fuzzy for small 8, while for large 8 there is a sharp transition from
1/K to 0 (see fig. (1)). In the large B limit only data points within a distance measure A
from any y, are important when updating the cluster centers.

The well known K-means clustering algorithm [2] corresponds to A = 0o, 8 = oo and the
number of initial cluster centers K, fixed a priori.

The parameter A makes it natural to introduce, at least formally, the notation of a zero

neuron Vo,
e P

T e PALY, e FMiy (1)

Vio

The zero neuron consists of all data points having min,(M;,) > A. Since, 25{:0 Vie =1, we
can interpret V;, as the probability, at a given 3, for data point 7 to belong to cluster a. A



Figure 1: This figure shows V;, as a function of M;, for 8 = 1, 5,20 together with A = 5 and M =
M;, (V b). V;, varies slowly for small 8 making a fuzzy border for the noise rejection. For large values of
B however, there is a sharp transition from 1/K to 0 as M;, becomes larger than ).

cluster probability Pg(a) can be defined as

Fp(a) = %ZV , (12)

which gives the probability for y, being a cluster center. Pg(a) can be used after conver-
gence of the algorithm to delete non-valid clusters having a small Pg(a).

Using cluster probabilities as a regularization tool is used in ref. [9] by including Ps(a) in
the error measure £

E=Y Si[Ma+4Ca(P)] , (13)

i,a

where C, is function of the cluster probabilities P,. Any a priori information about the
clustering problem is then put into the functional form of the C,’s.



3 Dynamical Properties

The update equation (eq. (8)) above determines, for a fixed 3, a set of cluster centers
{yala =1,...,K}. For 8 =0 (T = c0) every configuration becomes equally probable and
all y,’s will merge into a common fix point y, located at the center of mass?. For nonzero,
but small 8 y. is implicitly given by

where V,, denotes the the Potts factor evaluated at the fixpoint y,.. At this point only one
cluster occur - the entire data set.

If B is increased further, then at some 8 = (. the fixpoint y, will become unstable and
the single cluster splits into one or more new clusters as the system undergoes a phase
transition [6].

For synchronous updating 3. can be found by studying the eigenvalues to the Jacobian
matrix M, defined by

0
Mep = —Qf1, , 1
° Oy ® ( 5)
0 0 0
— = s, 16
oys (3}’1)1 aYbD) (16)

where f, is defined in eq. (8) and D is the dimension. It is clear that y. will become
unstable when the absolute value of any eigenvalue of M grows larger than unity. Straight
forward calculation gives

Mas = 66D + B (17)
where §4 1s the Kronecker §-symbol and the matrices D and B are given by

B = —EﬂZVZ(Xz’_Y*)@(Xz’_Y*) : (19)

and IP) denotes the D-dimensional identity matrix. M can now be written as
M=D®I®¥) +B®KP , (20)

with Pop = 1/K, (a,b = 1,...,K). From eq. (20) it follows that two different modes of
splitting occur, either in the parallel mode where the eigenvector Y satisfies PY =Y, or

2 center of mass is, without loss of generality, taken to be the origin.



in the transverse mode with PY = 0. In the latter all clusters will move away from the
fixpoint with their center of mass conserved and this is experimentally always the case.
For the transverse mode where the eigenvalues of M are given by the eigenvalues o; of D,
one has

Umaz /min — 1- EZ Vis + Eﬂvmaz/min . (21)

In eq. (21) Ymac/min is the largest/smallest eigenvalue of the matrix }; Vi.(x; — y.) ® (x; —
¥.). The fixpoint becomes unstable if (@msr > 1) or (@min < —1). The latter, however,
cannot occur as long as € < K/N. The condition for instability is therefore apm,, = 1
which gives 8. implicitly from

?

. Ez V;*
7maz

For serial updating the analysis becomes somewhat more complicated. The idea is to bring
it back to the synchronous case using an effective updating matrix (for details see appendix

B).

B

(22)

So far only the splitting of the first cluster has been analyzed. Critical temperatures for
subsequent splittings can be found approximately using the method above, but only with
the subset of data points closest to the splitting cluster.

For the cluster problems studied in this paper 8. is much larger than the average M;,,
therefore the 8 = 20 curve in figure 1 is the relevant picture for V;, when the first splitting
occur. In order to take into account all possible clusters A should initially be set to a
relatively high value. As more and more clusters are being formed A must be decreased in
order to reject possible noise data points.

4 Simulations and Results

4.1 Implementation Issues

This algorithm can be implemented in different ways depending on the known a priori
information about the clustering problem. In its “raw” form it contains two parameters
K, the number of initial cluster centers, and the noise parameter A. In all of the problems
studied in this paper good solutions were found having a large initial A and gradually
decreasing A to a small value at the point of convergence. This leaves only K as a parameter
that has to be set by the user. The solution quality is, however, not sensitive to K as long
as K is larger than or equal to the true number of clusters. If necessary, degenerate y, can
be removed afterwards by a simple heuristic. Figure 2 shows the implementation scheme
used for the numerical simulations in this paper. No effort was made on how to find an



1. Rescale the data distribution to a predefined dynamical range R,
such that |x;| € [—R, R] (we used R = 1). Transform data to the
center of mass system ), x; = 0.

2. Choose K and set Ay = RZ, since initially all data points are
important. Set the update parameter € in eq. (8) to the value K/N

3. Find the critical 3, as described in the above section.

4. Start the annealing procedure by setting 8 = 0.95 % 8., A = Asant
and y, = y. + “small random vector” (a =1, ..., K).

5. Update cluster centers y, according to eq. (8). Both synchronous
and serial updating is possible. We use synchronous updating since
it is more rapid.

Let A -5 0.98 x A and 8 — 1.01 % .
If B < Bmaz goto b else continue.

Delete degenerate clusters, that is, reject y, if yo = y3 for a # b.

R

Reject clusters with a small Ps (see eq. (12)).

Figure 2: The cluster algorithm with a deterministic annealing procedure suitable for data sets contami-
nated with noise.

optimal B4, for each individual problem and we simply used a fixed (3,,,, = 1200 for the
problems studied.

4.2 Numerical Tests

The algorithm is tested on different problems using the k-means algorithm as a reference.
The performance of either method is measured by A, given by

1 K K’
A= o max az::lmbin(Dab) , bz:;main(Dab) , (23)

where K' is the correct number of clusters and Dy is the distance between y, and cluster
b. D denotes the average distance between true clusters and is used as a normalization. A
small A indicates a good solution while a large A means that either too many or too few
clusters were found.

The data sets consists of clusters generated by normally distributed sources, with equal
width, such that each cluster has a fractional population that lies within [0.3,1]. There



(b) (e)

Figure 3: (a) Data set with 3000 points, 5 clusters and a noise level of 50%. (b) Development of the
individual y, during the annealing procedure. (¢) The true cluster locations (stars) and the solution
found after convergence (squares).

Algorithm N = 2000 N = 3000 N = 3000 N = 5000
noise = 0% noise = 50% noise = 50% noise = 100%
# clusters = 4 | # clusters = 4 | # clusters = 6 | # clusters = 10
K | A K | A K | A K | A
Our method | 4 | 0.07+0.07 | 4 | 0.05+0.08| 6 | 0.09+0.07 | 10 | 0.09 £ 0.04
Our method | 8 | 0.10£0.09 | 8 | 0.04+£0.05| 10| 0.08£0.10 | 15| 0.10 +0.05
Our method | 12 | 0.13 £0.15 | 12 | 0.10 £0.18 | 14 | 0.07 £0.08 | 20 | 0.11 4+ 0.06
K-means 4 10.09+0.07| 4 [{0314+0.19| 6 | 0.284+0.13 | 10 | 0.24 £0.08
K-means 8 {0.37+0.18 | 8 [0.87+0.32 | 10 | 0.53 +0.14 | 15 | 0.42 + 0.08

Table 1: Comparisons of performance for the deterministic annealing method and the k-means clustering
algorithm. A is an average taken over 50 independent runs.

is no constraint for the cluster locations and it may happen that clusters overlap heavily.
Figure 3 shows a cluster problem with 5 clusters and a 50% noise level (N = 3000) together
with the development of the individual y, during annealing (K = 10). It is encouraging to
see how the algorithm finds the correct solution despite the high noise level (see fig. 3c).

Table 1 summarizes the comparison between k-means and the method of figure 2. Each A
shown is an average over 50 independent runs. The rather large variance for our method
originates from a very few solutions where too many clusters are found and where the simple
Pg-criteria (see eq. (12)) failed to remove superfluous y,. In any case it outperforms the
k-means method even when the latter is always initialized with the correct number of



clusters.

5 Conclusion
We have devised a cluster finding method suitable for data distributions contaminated with
a lot of noise. It converges using a deterministic annealing procedure.

Phase transition temperatures where the initial clusters split are derived and used to initiate
the algorithm thereby avoiding unnecessary CPU consumption.

The algorithm is related to robust statistics - it ignores noise to a desired level. The
approach is easy to adapt to specific situations. For example, suppose each data point
comes with a measure of “goodness”. Then the formalism can be generalized to allow for
i-dependent A’s (A — A;).

The specific implementation of our approach used in this paper has one external parameter
K - the number of initial cluster centers. However, one only has to estimate the upper
bound for the number of clusters present in data sets one studies.

The approach has been tested on different clustering problems with encouraging results.
The good performance is possible because the formalism allows for possible unassigned

data points thereby making it different from other related approaches [6, 9, 10].

The approach scales like NxK and has the advantage of being intrinsically parallel.

Acknowledgements

This work was supported by the Goran Gustafsson Foundation for Research in Natural
Sciences and Medicine.

Appendix A

This appendix contains a calculation of the marginal probability distribution Pas(Y). We start from the

€Iror measure 9
E({Sia}, Y) = Z SiaMig + A Z (Z Sia — 1) s (A].)



with i=1,..., N and a = 1,..., K. Define (i) = ), Sia, then the constraint for S is given by
o(i)=1lor0 Vi. (A2)

We next calculate the marginal probability distribution Pas(Y) given by

Py(Y) =) P({5u},Y) , (A3)
Sy

where the sum is over all matrices S satisfying eq. (A2). There are (K + 1)V such different matrices.
Using eq. (A1) we get

ZPy = ZZ P— Ze—ﬂ (30, SuMutr(Y, 5:-1)°) . (A4)
S} S}

Now replace E{S} by E{a(i)}, where a(z) is defined as follows:

For any matrix S satisfying the constraint one has
Sia(i) =11if 0'(1,) =1. (A5)
If o(3) = 0 we set o(4) = 0 since in any case Y, Sig = 0.

The marginal probability can now be written as

Z Py Z exp (—ﬂz [Mia(iybo(i),1 + A5a(i),o]) =

{a(®)}

Z HeXP (=B [Mia(ibo(i),1 + Aai)o]) (A8)
{a(i)} ©

where 6 is the Kronecker delta symbol. This sum of (K + 1)N products can, since the order of the different
«(%)’s are unimportant, be written as a N product of (K + 1) terms

zPy =] (e_ﬂ)‘ + Ze—ﬂMm) . (A7)

It is now easy to write Pys as a Boltzmann distribution

1 _
PM — Ee ﬂEeﬁ , (A8)
where the effective error E g is given by
| X K
E.p = —EZIOg(e_ﬂ)‘—I—Ze_ﬂM"“) . (A9)
i=1 a=1

10



Appendix B

In this appendix we derive the effective synchronous updating matrix for serial updating. Start by ex-
panding f; in eq. (8) to the first order around the fixpoint y.. One gets

Yo = fa(Y) (A1)
Ny
= 1P (V) + ) (— ® fa) (v —y-) - (A2)
b=1 ayb
Straight forward calculations gives

K

¥, =Dya.+ > By,—(D+KB)y. , (A3)
b=1

where the matrices D and B are defined in eq. (18). Considering only the fluctuations s, around the
fixpoint the serial updating reads

a—1 K
s;:(D—|—B)sa—|—ZBsg—|— Z Bsp , (A4)
b=1 b=a+1

with the prime denoting the updated variable. Let S be the vector of all fluctuations, then
s’ = (D+B)®I(K)]S+(B®L)S’—|—(B®U)S. (A5)

In eq. (A5) L and U are defined as,

o= {0 ez (a9
o = [t w

Rearranging the terms in eq. (A5) we finally get,
S’:(I(KD)—B(X)L)_l (Bou+(d+B)8I®)s . (A8)

The matrix appearing in front of S can now be regarded as the effective synchronous updating matrix
that corresponds to serial updating. The fixpoint y, will become unstable when the absolute value of any
eigenvalue of this matrix grows larger than unity.
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