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1 IntroductionAn important problem in pattern recognition and computer vision is the detection ofclusters in the presence of noise. From a given observed data distribution one shouldreplace all data points by a set of representative vectors or cluster centers such that theinformation loss is minimized. Very often, none or very limited a priori information aboutthe distribution is available. Also, in many real-world applications the observed distributioncan be very noisy, in which case some data points should not be assigned to any clusterat all. If the underlying distribution has a known parametric form, standard methods likeBayesian learning [1] can be applied. However, in cases where no such prior information isavailable alternative non-parametric methods must be used. One class of such methods arealgorithms that minimize a given error function (or distortion measure). The well-knownk-means clustering algorithm [2] is such an example.The algorithm derived in this paper minimizes an error function that is suitable for datadistributions containing a lot of noise. It is inspired by a method used for track �nding inhigh energy physics [3, 5] where a set of deformable templates are adjusted to match realtracks represented by the data set. The cluster problem can be viewed as a special case ofthe track �nding problem where each deformable template now represents possible clustercenters matching the data set. The algorithm converges using a deterministic annealingprocedure, which corresponds to minimizing the free energy of a Boltzmann distributionof the error function. Related algorithms using statistical mechanics as a tool for theoptimization procedure in clustering are found in refs. [6, 7, 8, 9, 10].The main results in our approach are:� The error function allows for unassigned data points thereby neglecting data pointscorresponding to noise. The amount of noise points the algorithm allows for is gov-erned by the parameter � which can be interpreted as the square of a width of a zeroneuron collecting noise points.� Phase transition properties of the algorithm are discussed and critical temperaturesare derived for clusters splitting in a hierarchical way.� The solution quality is not sensitive to the number of initial clusters K.� Numerical studies on simulated data shows good solution quality for problem sizes upto 5000 data points with a 100% noise level.1



2 The AlgorithmThe problem is to replace a data set fxiji = 1; :::Ng by a set of representative vectorsfyaja = 1; :::;Kg, such that the information loss is minimized. If the data contains nonoise the above objective can be achieved by minimizing the distortion errorE 0(Y) = 1N NXi=1mina (Mia) ; (a = 1; :::;K) ; (1)where Y = (y1; :::;yK) and Mia is a distortion measure between data point xi and clustercenter ya. There are many possible choices for Mia [9]. Because of simplicity Mia is inwhat follows taken to be the half squared Euclidean distance between xi and ya,Mia = 12 jxi � yaj2 : (2)On the other hand, if the data contains noise that should be ignored, then E 0 is modi�edaccording to [3, 4, 5]E(fSiag;Y) = NXi=1 KXa=1SiaMia + � NXi=1  KXa=1Sia � 1!2 ; (3)where Sia is a logical decision unit such that Sia = 1 if data point i is assigned to clustera and zero otherwise. The parameter � imposes a penalty if point i is not assigned toany cluster center a. In order to allow for possible noise points the matrix S, with matrixelements Sia, is subject to the constraintKXa=1Sia = 1 or 0 8 i : (4)In this way the parameter � governs the amount of noise the algorithm allows for.When minimizing E in eq. (3) subject to the constraint of eq. (4), 
uctuations areintroduced into the system using simulated annealing [11] where the system is allowed tothermalize for a sequence of temperatures Tn > Tn�1 > ::: > T0 according to the Boltzmanndistribution P (fSiag;Y) = 1Z e��E(fSiag;Y) ; (5)where � = 1=T and Z is a normalization constant, the so-called partition function.In order to obtain the marginal probability distribution PM (Y) we must sum P (fSiag;Y)over all matrices S that satis�es the constraint eq. (4). Doing this (for details see appendixA) we end up with PM (Y) = 1Z e��Ee� (Y) ; (6)2



where the e�ective error Ee� is introduced asEe� (Y) = � 1� NXi=1 log (e��� + KXa=1 e��Mia) : (7)At a given temperature (1=�), the most probable con�guration according to eq. (6) isgiven by the minima of Ee� . Using a gradient descent method to minimize Ee� one getsthe updating rule ya ! fa(Y) � ya � �raEe� == ya + �Xi Via(xi � ya) ; (8)where � is the step size and the Potts neuron Via is given byVia = e� 12�jxi�yaj2e��� +Pb e� 12�jxi�yb j2 : (9)Eq. (8) is easy to interpret. Each cluster center ya takes small steps towards signal pointsxi with a relative strength given by Via. The latter is bounded by 0 < Via < 1 and has thenatural interpretation, Via = < Sia >�, as the thermal average of the binary assignmentvariable Sia.The role played by the parameter � can be seen by rewriting Via asVia = 1e��(��Mia) +Pb e��(Mib�Mia) : (10)Figure 1 shows Via as a function of Mia for three di�erent values of � and for the specialcase of � = 1 and Mib = Mia (8 b). If Mia < � then Via ! 1=K as � !1, on the otherhand ifMia > � then Via ! 0 as � !1. In general we can interpret � as a border for noiserejection. This border is fuzzy for small �, while for large � there is a sharp transition from1=K to 0 (see �g. (1)). In the large � limit only data points within a distance measure �from any ya are important when updating the cluster centers.The well known K-means clustering algorithm [2] corresponds to � = 1, � =1 and thenumber of initial cluster centers K, �xed a priori.The parameter � makes it natural to introduce, at least formally, the notation of a zeroneuron Vi0, Vi0 = e���e��� +Pb e��Mib : (11)The zero neuron consists of all data points having mina(Mia) � �. Since, PKa=0 Via = 1, wecan interpret Via as the probability, at a given �, for data point i to belong to cluster a. A3
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β = 20Figure 1: This �gure shows Via as a function of Mia for � = 1; 5; 20 together with � = 5 and Mib =Mia (8 b). Via varies slowly for small � making a fuzzy border for the noise rejection. For large values of� however, there is a sharp transition from 1=K to 0 as Mia becomes larger than �.cluster probability P�(a) can be de�ned asP�(a) = 1N NXi=1 Via ; (12)which gives the probability for ya being a cluster center. P�(a) can be used after conver-gence of the algorithm to delete non-valid clusters having a small P�(a).Using cluster probabilities as a regularization tool is used in ref. [9] by including P�(a) inthe error measure E E =Xi;a Sia [Mia + 
Ca(Pa)] ; (13)where Ca is function of the cluster probabilities Pa. Any a priori information about theclustering problem is then put into the functional form of the Ca's.4



3 Dynamical PropertiesThe update equation (eq. (8)) above determines, for a �xed �, a set of cluster centersfyaja = 1; :::;Kg. For � = 0 (T = 1) every con�guration becomes equally probable andall ya's will merge into a common �x point y� located at the center of mass2. For nonzero,but small � y� is implicitly given byy� = Pi Vi�xiPi Vi� � � �(K + 1) 1N Xi x2ixi ; (14)where Vi� denotes the the Potts factor evaluated at the �xpoint y�. At this point only onecluster occur - the entire data set.If � is increased further, then at some � = �c the �xpoint y� will become unstable andthe single cluster splits into one or more new clusters as the system undergoes a phasetransition [6].For synchronous updating �c can be found by studying the eigenvalues to the Jacobianmatrix M, de�ned by Mab = @@yb 
 fa ; (15)@@yb �  @@yb1 ; :::; @@ybD! ; (16)where fa is de�ned in eq. (8) and D is the dimension. It is clear that y� will becomeunstable when the absolute value of any eigenvalue of M grows larger than unity. Straightforward calculation gives Mab = �abD+ B ; (17)where �ab is the Kronecker �-symbol and the matrices D and B are given byD = I(D)  1� �Xi Vi�!+ ��Xi Vi� (xi � y�)
 (xi � y�) (18)B = ���Xi V 2i� (xi � y�)
 (xi � y�) ; (19)and I(D) denotes the D-dimensional identity matrix. M can now be written asM = D
 I(K) + B
KP ; (20)with Pab = 1=K, (a; b = 1; :::;K). From eq. (20) it follows that two di�erent modes ofsplitting occur, either in the parallel mode where the eigenvector Y satis�es PY = Y, or2center of mass is, without loss of generality, taken to be the origin.5



in the transverse mode with PY = 0. In the latter all clusters will move away from the�xpoint with their center of mass conserved and this is experimentally always the case.For the transverse mode where the eigenvalues of M are given by the eigenvalues �i of D,one has �max=min = 1� �Xi Vi� + ��
max=min : (21)In eq. (21) 
max=min is the largest/smallest eigenvalue of the matrix Pi Vi�(xi�y�)
 (xi�y�). The �xpoint becomes unstable if (�max > 1) or (�min < �1). The latter, however,cannot occur as long as � � K=N . The condition for instability is therefore �max = 1,which gives �c implicitly from �c = Pi Vi�
max : (22)For serial updating the analysis becomes somewhat more complicated. The idea is to bringit back to the synchronous case using an e�ective updating matrix (for details see appendixB).So far only the splitting of the �rst cluster has been analyzed. Critical temperatures forsubsequent splittings can be found approximately using the method above, but only withthe subset of data points closest to the splitting cluster.For the cluster problems studied in this paper �c is much larger than the average Mia,therefore the � = 20 curve in �gure 1 is the relevant picture for Via when the �rst splittingoccur. In order to take into account all possible clusters � should initially be set to arelatively high value. As more and more clusters are being formed � must be decreased inorder to reject possible noise data points.4 Simulations and Results4.1 Implementation IssuesThis algorithm can be implemented in di�erent ways depending on the known a prioriinformation about the clustering problem. In its \raw" form it contains two parametersK, the number of initial cluster centers, and the noise parameter �. In all of the problemsstudied in this paper good solutions were found having a large initial � and graduallydecreasing � to a small value at the point of convergence. This leaves onlyK as a parameterthat has to be set by the user. The solution quality is, however, not sensitive to K as longas K is larger than or equal to the true number of clusters. If necessary, degenerate ya canbe removed afterwards by a simple heuristic. Figure 2 shows the implementation schemeused for the numerical simulations in this paper. No e�ort was made on how to �nd an6



1. Rescale the data distribution to a prede�ned dynamical range R,such that jxij 2 [�R;R] (we used R = 1). Transform data to thecenter of mass system Pi xi = 0.2. Choose K and set �start = R2, since initially all data points areimportant. Set the update parameter � in eq. (8) to the value K=N3. Find the critical �c as described in the above section.4. Start the annealing procedure by setting � = 0:95 � �c, � = �startand ya = y� + \small random vector" (a = 1; :::;K).5. Update cluster centers ya according to eq. (8). Both synchronousand serial updating is possible. We use synchronous updating sinceit is more rapid.6. Let �! 0:98 � � and � ! 1:01 � �.7. If � < �max goto 5 else continue.8. Delete degenerate clusters, that is, reject ya if ya � yb for a 6= b.9. Reject clusters with a small P� (see eq. (12)).Figure 2: The cluster algorithm with a deterministic annealing procedure suitable for data sets contami-nated with noise.optimal �max for each individual problem and we simply used a �xed �max = 1200 for theproblems studied.4.2 Numerical TestsThe algorithm is tested on di�erent problems using the k-means algorithm as a reference.The performance of either method is measured by �, given by� = 1K 0 �D max24 KXa=1minb (Dab) ; K0Xb=1mina (Dab)35 ; (23)where K 0 is the correct number of clusters and Dab is the distance between ya and clusterb. �D denotes the average distance between true clusters and is used as a normalization. Asmall � indicates a good solution while a large � means that either too many or too fewclusters were found.The data sets consists of clusters generated by normally distributed sources, with equalwidth, such that each cluster has a fractional population that lies within [0:3; 1]. There7



Figure 3: (a) Data set with 3000 points, 5 clusters and a noise level of 50%. (b) Development of theindividual ya during the annealing procedure. (c) The true cluster locations (stars) and the solutionfound after convergence (squares).Algorithm N = 2000 N = 3000 N = 3000 N = 5000noise = 0% noise = 50% noise = 50% noise = 100%# clusters = 4 # clusters = 4 # clusters = 6 # clusters = 10K � K � K � K �Our method 4 0:07 � 0:07 4 0:05 � 0:08 6 0:09 � 0:07 10 0:09� 0:04Our method 8 0:10 � 0:09 8 0:04 � 0:05 10 0:08 � 0:10 15 0:10� 0:05Our method 12 0:13 � 0:15 12 0:10 � 0:18 14 0:07 � 0:08 20 0:11� 0:06K-means 4 0:09 � 0:07 4 0:31 � 0:19 6 0:28 � 0:13 10 0:24� 0:08K-means 8 0:37 � 0:18 8 0:87 � 0:32 10 0:53 � 0:14 15 0:42� 0:08Table 1: Comparisons of performance for the deterministic annealing method and the k-means clusteringalgorithm. � is an average taken over 50 independent runs.is no constraint for the cluster locations and it may happen that clusters overlap heavily.Figure 3 shows a cluster problem with 5 clusters and a 50% noise level (N = 3000) togetherwith the development of the individual ya during annealing (K = 10). It is encouraging tosee how the algorithm �nds the correct solution despite the high noise level (see �g. 3c).Table 1 summarizes the comparison between k-means and the method of �gure 2. Each �shown is an average over 50 independent runs. The rather large variance for our methodoriginates from a very few solutions where too many clusters are found and where the simpleP�-criteria (see eq. (12)) failed to remove super
uous ya. In any case it outperforms thek-means method even when the latter is always initialized with the correct number of8



clusters.5 ConclusionWe have devised a cluster �nding method suitable for data distributions contaminated witha lot of noise. It converges using a deterministic annealing procedure.Phase transition temperatures where the initial clusters split are derived and used to initiatethe algorithm thereby avoiding unnecessary CPU consumption.The algorithm is related to robust statistics - it ignores noise to a desired level. Theapproach is easy to adapt to speci�c situations. For example, suppose each data pointcomes with a measure of \goodness". Then the formalism can be generalized to allow fori-dependent �'s (�! �i).The speci�c implementation of our approach used in this paper has one external parameterK - the number of initial cluster centers. However, one only has to estimate the upperbound for the number of clusters present in data sets one studies.The approach has been tested on di�erent clustering problems with encouraging results.The good performance is possible because the formalism allows for possible unassigneddata points thereby making it di�erent from other related approaches [6, 9, 10].The approach scales like NxK and has the advantage of being intrinsically parallel.AcknowledgementsThis work was supported by the G�oran Gustafsson Foundation for Research in NaturalSciences and Medicine.Appendix AThis appendix contains a calculation of the marginal probability distribution PM(Y). We start from theerror measure E(fSiag;Y) =Xi;a SiaMia + �Xi  Xa Sia � 1!2 ; (A1)9



with i = 1; :::; N and a = 1; :::;K. De�ne �(i) =Pa Sia, then the constraint for S is given by�(i) = 1 or 0 8 i : (A2)We next calculate the marginal probability distribution PM (Y) given byPM (Y) =XfSg P (fSiag;Y) ; (A3)where the sum is over all matrices S satisfying eq. (A2). There are (K + 1)N such di�erent matrices.Using eq. (A1) we get ZPM = ZXfSg P =XfSg e��Pi�Pa SiaMia+�(Pa Sia�1)2� : (A4)Now replace PfSg by Pf�(i)g, where �(i) is de�ned as follows:For any matrix S satisfying the constraint one hasSi�(i) = 1 if �(i) = 1 : (A5)If �(i) = 0 we set �(i) = 0 since in any case Pa Sia = 0.The marginal probability can now be written asZPM = Xf�(i)g exp ��Xi �Mi�(i)��(i);1 + ���(i);0�! == Xf�(i)gYi exp ��� �Mi�(i)��(i);1 + ���(i);0�� ; (A6)where � is the Kronecker delta symbol. This sum of (K+1)N products can, since the order of the di�erent�(i)'s are unimportant, be written as a N product of (K + 1) termsZPM =Yi  e��� +Xa e��Mia! : (A7)It is now easy to write PM as a Boltzmann distributionPM = 1Z e��Ee� ; (A8)where the e�ective error Ee� is given byEe� = � 1� NXi=1 log (e��� + KXa=1 e��Mia) : (A9)10



Appendix BIn this appendix we derive the e�ective synchronous updating matrix for serial updating. Start by ex-panding fa in eq. (8) to the �rst order around the �xpoint y�. One getsy0a = fa(Y) (A1)= I(D)fa(Y�) + KXb=1� @@yb 
 fa� (yb � y�) : (A2)Straight forward calculations givesy0a = Dya + KXb=1Byb � (D+KB)y� ; (A3)where the matrices D and B are de�ned in eq. (18). Considering only the 
uctuations sa around the�xpoint the serial updating readss0a = (D + B) sa + a�1Xb=1 Bs0b + KXb=a+1Bsb ; (A4)with the prime denoting the updated variable. Let S be the vector of all 
uctuations, thenS0 = h(D+ B)
 I(K)iS+ (B
 L)S0 + (B
 U)S : (A5)In eq. (A5) L and U are de�ned as, Lab = � 1 if a > b0 if a � b (A6)Uab = � 1 if a < b0 if a � b (A7)Rearranging the terms in eq. (A5) we �nally get,S0 = �I(KD) � B
 L��1 �B
 U+ (D+ B)
 I(K)�S : (A8)The matrix appearing in front of S can now be regarded as the e�ective synchronous updating matrixthat corresponds to serial updating. The �xpoint y� will become unstable when the absolute value of anyeigenvalue of this matrix grows larger than unity.References[1] R.O. Duda and P.E. Hart, Pattern Classi�cation and Scene Analysis, John Wiley andSons, New York (1973).[2] J. MacQueen, \Some methods for classi�cation of and analysis of multivariate obser-vations", Proceedings of the 5th Berkeley Symposium on Mathematical Statistics andProbability, (1967) 281-297. 11
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