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Agreement Between Artificial Neural Networks and Experienced
Electrocardiographer on Electrocardiographic Diagnosis of Healed

Myocardial Infarction
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Lund, Sweden and Winston-Salem, North Carolina

Objectives. The purpose of this study was to compare the
diagnoses of healed myocardial infarction made from the 12-lead
electrocardiogram (ECG) by artificial neural networks and an
experienced electrocardiographer.

Background. Artificial neural networks have proved of value in
pattern recognition tasks. Studies of their utility in ECG inter-
pretation have shown performance exceeding that of conventional
ECG interpretation programs. The latter present verbal state-
ments, often with an indication of the likelihood for a certain
diagnosis, such as “possible left ventricular hypertrophy.” A
neural network presents its output as a numeric value between 0
and 1; however, these values can be interpreted as Bayesian
probabilities.

Methods. The study was based on 351 healthy volunteers and
1,313 patients with a history of chest pain who had undergone

diagnostic cardiac catheterization. A 12-lead ECG was recorded in
each subject. An expert electrocardiographer classified the ECGs
in five different groups by estimating the probability of anterior
myocardial infarction. Artificial neural networks were trained and
tested to diagnose anterior myocardial infarction. The network
outputs were divided into five groups by using the output values
and four thresholds between 0 and 1.

Results. The neural networks diagnosed healed anterior myo-
cardial infarctions at high levels of sensitivity and specificity. The
network outputs were transformed to verbal statements, and the
agreement between these probability estimates and those of an
expert electrocardiographer was high.

Conclusions. Artificial neural networks can be of value in
automated interpretation of ECGs in the near future.

(J Am Coll Cardiol 1996;28:1012~6)

Artificial neural networks are computer-based decision tools
that have proved of particular value in pattern recognition
tasks. Their utility has been tested in processing of the
electrocardiogram (ECG) (1-4), and studies concerning de-
tection of myocardial infarction and lead reversal have re-
ported performance exceeding that of conventional rule-based
ECG interpretation programs (5,6). The diagnostic perfor-
mance of the artificial neural networks in those studies makes
it of interest to assess the possibility of implementing artificial
neural networks in conventional ECG interpretation pro-
grams. However, neural networks present numeric output
values, whereas conventional ECG interpretation programs
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present verbal statements. For some diagnoses the latter also
present different levels of likelihood, such as “possible left
ventricular hypertrophy” or “probable inferior myocardial
infarction.” This approach is now widely used and accepted by
ECG readers.

Statements with probability estimates can also be obtained
with artificial neural networks. It has been shown that a neural
network output under certain circumstances indicates a Bayes-
ian probability (see Appendix). An artificial neural network
classifying ECGs as indicative or not indicative of anterior
myocardial infarction has output values between 0 and 1.
Values close to 0 should be assigned by the network to normal
ECGs, and values close to 1 assigned to ECGs with clear-cut
changes consistent with anterior myocardial infarction, such as
a QS pattern in leads V, to V,. Intermediate values should be
assigned to ECGs with borderline findings (such as poor R
wave progression in anterior leads). Therefore it would be
appropriate, also from a theoretic point of view, to introduce
several thresholds to the network output and, hence, several
categories, such as “no,” “possible,” “probable” and “definite”
infarction. The purpose of the present study was to transform
numeric artificial neural network outputs into verbal state-
ments and to compare these verbal probability estimates with
those of an experienced electrocardiographer. A data base of
digitized ECGs was therefore analyzed for the presence or
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Table 1. Number of Patients in Total Study Group and Subgroups

Patients

(no.)

Total anterior myocardial infarction group 414
Isolated anterior myocardial infarction 272
Combined anterior + inferior myocardial infarction 142
Total control group 1,250
Healthy volunteers 351
Catheterization normal 479
Isolated inferior myocardial infarction 356
Isolated posterior myocardial infarction 64
Total study group 1,664

absence of healed anterior myocardial infarction, and ECG-
independent methods were used as a reference standard.

Methods

Study group. A total of 1,664 subjects were included in the
study; 351 healthy volunteers and 1,313 patients with a history
of chest pain. The healthy volunteers were selected at random
from a defined urban population. They were without any
known or suspected heart disease, lung disease or any other
pathologic condition that might influence the ECG (7). All
patients had undergone diagnostic cardiac catheterization at
the North Carolina Baptist Hospital, Winston-Salem, North
Carolina. Patients with normal coronary arteries, normal find-
ings on contrast left ventriculography, no evidence of valve
dysfunction or congenital heart disease, ejection fraction
=50% and an overall study evaluation of “normal” were
classified as “catheterization-normal.” Anterior myocardial
infarction was defined by presence of =75% diameter stenosis
of the left main coronaty artery, the left anterior descending
coronary artery or its major diagonal branches and akinesia or
dyskinesia of the anterosuperior wall in the right anterior
oblique ventriculogram. Inferior myocardial infarction was
defined by presence of =75% diameter stenosis of the right
coronary artery and akinesia or dyskinesia of the inferior wall
in the right anterior oblique ventriculogram. Posterolateral
myocardial infarction was defined by the presence of =75%
diameter stenosis of the left circumflex artery or any of its
major branches and akinesia or dyskinesia of the posterolateral
wall in the left anterior oblique ventriculogram.

Patients with isolated anterior myocardial infarction and
patients with both anterior and inferior myocardial infarction
constituted the anterior myocardial infarction group. A control
group was composed of the healthy volunteers, patients
classified as catheterization-normal and patients with isolated
inferior or posterolateral myocardial infarction. Patients with
technically deficient ECGs or ECGs showing left bundle
branch block were excluded. The number of patients in the
different subgroups of the overall study group is presented in
Table 1.

ECG analysis. A 12-lead ECG was recorded in each sub-
ject by using a computerized electrocardiograph. The fre-
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quency range was in accordance with American Heart Associ-
ation specifications (0.05 to 100 Hz). Noise reduction was
made by time-coherent averaging. Averaged complexes were
transferred to a computer and stored for further analysis.
Measurements of amplitudes and durations of the ECG com-
plexes were performed by using custom software. The follow-
ing automated measurements from leads V,, V5 and V, were
used as inputs to the artificial neural networks: Q, R and S
wave amplitudes, Q and R wave durations as well as three
amplitudes within the ST-T segment. The interval between the
ST junction and the end of the T wave was divided into six
segments of equal duration, and the amplitudes at the end of
segments 1, 3 and 5 were used as network inputs.

Electrocardiographer. An experienced electrocardio-
grapher classified each of the electrocardiograms into one of
the following five classes: I = definitely no anterior myocardial
infarction; II = probably no anterior myocardial infarction;
III = possible anterior myocardial infarction; IV = probable
anterior myocardial infarction; V = definite anterior myocar-
dial infarction.

The ECGs, showing only leads V, to Vi, were presented in
random order to the electrocardiographer. No personal data,
clinical findings or results from the neural networks were
available at the classification procedure.

Artificial neural networks. A multilayered perceptron ar-
tificial neural network architecture (8) was used. A more
general description of neural networks can be found elsewhere
(9). The neural networks consisted of one input layer, one
hidden layer and one output layer. The number of neurons in
the input layer equals the number of input variables (i.e., 24
measurements from leads V, to V,, as presented above. The
hidden layer contained six neurons, and a single output unit
encoded the probability of anterior myocardial infarction.
Each variable in the training set is normalized such that the
mean of all examples is 0 with a unit variance.

The data set was divided into a training set and a test set.
The training set was used to adjust the connection weights,
whereas the test set was used to assess the performance. To
obtain as reliable performance as possible a K-fold cross-
validation procedure was used. The data set was randomly
divided into K equal parts. Each of the K different parts of the
data was used once as a test set, while training was performed
on the remaining (K-1) parts. We used threefold cross valida-
tion to decide when to terminate learning in order to avoid
“overtraining” and eightfold cross validation to train the
networks and assess their performances. The results presented
are based on 10 independent training/test runs; that is, the
eightfold cross-validation procedure was repeated 10 times.

During the training process the connection weights between
the neurons were adjusted by using the backpropagation
algorithm. A sigmoid transfer function was used. The learning
rate () had a start value of 0.5. During the training 7 was
decreased geometrically between epochs by using the following
equation:

n=kn with k=0998.
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Table 2. Electrocardiographer and Artificial Neural Network
Classifications of 1,664 Electrocardiograms

Artificial Neural Network Class

ECG

Class 1 I I v v
1 986 99 10 8 1
II 92 58 16 i1 10
I 16 14 7 10 8
v 8 14 10 23 18
\'% 2 2 12 21 208

Numbers in italics indicate agreement between the electrocardiographer
(ECG) and artificial neural network classification. See Methods for definition of
classes T to V.

The momentum « was set to 0.7. Updating occurred after
each 10 patterns. Training was terminated at a training error of
0.245, which was achieved after 18 to 21 epochs. The network
weights were initiated with random numbers between —0.025
and 0.025. All calculations were done using the JETNET 3.0
package (10).

The ECGs were classified into five groups by using the
network outputs and four different thresholds between 0 and 1.
The thresholds were selected so as to give the same number of
ECGs in classes I to V as were the result of the classification of
the electrocardiographer. Complete agreement between the
neural network and the electrocardiographer could be ob-
tained only by using these thresholds.

Statistical methods. The significance of the difference in
sensitivities between the artificial neural networks and the
electrocardiographer was tested with attention to the fact that
the same ECGs were used; that is, a McNemar type statistic
was used.

Results

Performance, The electrocardiographer classified 1,291
ECGs as “definitely no anterior myocardial infarction” (n =
1,104) or “probably no anterior myocardial infarction” (n =
187). Of these ECGs, 1,185 were control ECGs, resulting in a
specificity of 94.8%. A classification as “possible anterior
myocardial infarction” (n = 55), “probable anterior myocar-
dial infarction” (n = 73) or “definite anterior myocardial
infarction” (n = 245) was assigned to 373 ECGs. A true
positive classification was made in 308 of these cases, resulting
in a sensitivity of 74.4%. The sensitivity for the neural network
was 81.4% at a specificity of 94.8% and this difference in
sensitivity was significant (p < 0.001).

Agreement/disagreement. The classifications of the ECGs
by the electrocardiographer and the neural network are pre-
sented in Table 2. There was agreement in 1,282 ECGs
(77.0%), a difference of one class or less in 1,562 ECGs
(93.9%) and a difference two classes or less in 1,633 (98.1%).
In 31 cases a difference of more than two classes was found.
The electrocardiographer was correct in 9 of these ECGs and
the network in 22,

The nine ECGs on which the electrocardiographer and the
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ANN output  0.35 0.03 0.01
ANNclass Il | |
expertclass V \ [\

Figure 1. Three ECGs from the anterior myocardial infarction group
correctly classified by the electrocardiographer (expert) but incorrectly
classified as definitely no anterior myocardial infarction (class I) or
probably no anterior myocardial infarction (class II) by the artificial
neural network (ANN).

network disagreed by more than two classes, and on which the
network was incorrect constitute a particularly interesting
group. One of the nine ECGs had serious errors in the data of
the measurement program and was therefore not properly
presented to the networks. ECGs with errors of this kind may
impair the performance of the artificial neural network both
when they appear in the training set and the test set. Leads V,,
to V, of the remaining eight ECGs and the network outputs
(means of 10 different runs) are presented in Figures 1 and 2.

Three ECGs in the anterior myocardial infarction group
classified as probable or definite anterior myocardial infarction
by the electrocardiographer and as definitely or probably no
anterior myocardial infarction by the neural network are
presented in Figure 1. All three ECGs have R waves, though
with small amplitudes in some leads. They also have normal T
waves. Some QRS complexes have abnormal notches. This
information is not given to the network but could be used by an
ECG expert. The reversed R wave progression found in panel

Figure 2. Five ECGs from the control group correctly classified by the
electrocardiographer (expert) but incorrectly classified as probable
anterior myocardial infarction (class IV) or definite anterior myocar-
dial infarction (class V) by the artificial neural network (ANN).

A B C D E

ANN output  0.99 0.97 0.88
ANN class V Vv [\ v \Y

expertclass |l I | | |
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C of Figure 1 was not a common finding in the material.
Therefore, this pattern might be difficult for the network to
learn.

Figure 2 presents five ECGs from the control group that the
network falsely classified as definite or probable anterior
myocardial infarction. The extremely negative T waves found
in three cases were probably important in the network classi-
fications. The ECG in panel E has a decreasing R wave
amplitude from lead V, to lead V. This is not a normal finding
and the network classification is therefore not surprising.
However, it is not obvious why the network output of the ECG
in panel D is as high as 0.76, resulting in a classification of
probable anterior myocardial infarction. A network trained
and tested using QRS measurements only (without ST ampli-
tudes) obtained a lower output value and hence correctly
classified this case. This indicates that the ST amplitudes were
important for the high output value of the neural network,
which used both QRS and ST measurements as input variables.

Discussion

Main findings. The results of this and an earlier study (5)
show that neural networks can be trained to diagnose myocar-
dial infarction from the ECG with greater accuracy than that
obtained with use of a conventional interpretation program
and an experienced electrocardiographer. This study also
showed a high level of agreement between the artificial neural
network and the electrocardiographer. When there was obvi-
ous disagreement the artificial neural network was correct
somewhat more often than the expert, with regard to the
reference standard of this study material. Most users of black
box methods like artificial neural networks worry that the
methods make obvious and severe misclassifications in some
cases even though their overall performance is very good. The
worst network errors made in the 1,664 ECGs in this study are
presented in Figures 1 and 2.

Reasons for misclassification. Why were some ECGs mis-
classified by the artificial neural network and correctly classi-
fied by the electrocardiographer? A relatively small number of
input variables was used to train the neural networks in this
study. A network fed with many input variables requires many
examples in the training set. As a rule of thumb, the number of
training examples needed for appropriate training is 10 times
the total number of interneuron connections in the neural
network. In this study only eight variables from each of three
leads were used, but the number of weights was as high as 157.
A network of this size could be trained by using a data base of
some 1,500 ECGs, as in this study, but much larger networks
would probably not be sufficiently trained. In contrast, the
electrocardiographer makes his decision based on much more
data—in this study the QRS complexes and ST-T segments of
six leads. Therefore, it is not surprising that the electrocardio-
grapher outperforms the neural network in a few ECGs with
minor configurational deviations, such as notches in the QRS
complex.

Another reason for misclassification by the neural networks
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may have been that the networks in this study were only
trained to diagnose anterior myocardial infarction. Therefore,
some ECGs with deep inverted T waves but normal QRS
configuration, as in Figure 2, are likely to be classified as
showing anterior myocardial infarction. However, when all
precordial leads are taken into account, left ventricular hyper-
trophy with strain is a probable diagnosis. However, a neural
network could only learn this pattern if a sufficient number of
examples of left ventricular hypertrophy were added to the
data base.

Clinical implications. One advantage of artificial neural
networks over rule-based criteria is the enhanced diagnostic
performance. Another advantage is the ability to easily adjust
the network outputs in different clinical situations. Neural
network outputs can be regarded as Bayesian a posteriori
probabilities if the a priori probabilities of the classes in the
training data base are the same as the a priori probabilities in
the test situation. In this study the a priori probabilities were
0.25 for anterior myocardial infarction and 0.75 for non-
anterior myocardial infarction. Consequently, the networks
will only provide good Bayesian probabilities if used in envi-
ronments with these a priori class probabilities. It is also
possible to use the network in test situations with different a
priori probabilities without retraining (see Appendix). Con-
sider, for example, an ECG with a network output of 0.85,
which was interpreted as probable anterior myocardial infarc-
tion in this study. If this ECG were analyzed by an artificial
neural network from this study but recorded in a screening
situation, where the a priori probability of anterior myocardial
infarction is 0.05, the output value of the network would be
adjusted from 0.85 to 0.47 to represent a true a posteriori
probability. If the same ECG were recorded in a third situation
with a high a priori probability (0.50), the a posteriori proba-
bility would be 0.94. With use of the same thresholds for ECG
classification, the resulting statement would be “possible ante-
rior myocardial infarction” in the screening situation and
“definite anterior myocardial infarction” in the high a priori
probability situation. Also, an experienced electrocardio-
grapher takes into account the clinical situation in which an
ECG is recorded and adjusts the interpretation accordingly.

A disadvantage with artificial neural networks is the lack of
reasons for a certain diagnosis, which at least in theory can be
presernted from rule-based criteria. However, these criteria are
usually very complex. They are rarely studied in clinical
practice and probably not easy for many ECG readers to
understand. Nevertheless, they are well accepted by millions of
users.

Conclusions. Artificial neural networks can be trained to
diagnose healed anterior myocardial infarction at high levels of
sensitivity and specificity. The outputs from the neural net-
works can be transformed to verbal statements, and the
agreement between these probability estimates and those of an
expert electrocardiographer is high. Reasons for misdiagnosis
by the artificial neural network are the limited number of
variables of the ECG used as input values and the presence of
ECGs with uncommon features. Use of a large number
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of examples to train the artificial neural network will lower the
risk of misdiagnosis.

Appendix

Recall that (11) a Bayesian probability P(Cix) represents the
conditional probability for a class Ci given input x. The Bayes rule tells
us that it can be expressed as

P(Cix) = (P(xC)P(Ci))/P(x),

where P(xCi) is the conditional probability for producing the input
vector x given the class Ci, P(Ci) is the a priori probability of class Ci
and P(x) is the input probability distribution. In conventional Bayesian
analysis P(xCi) is given by well known parametric distributions (e.g.,
Gaussian), and the training involves estimating the parameters.

The artificial neural network is a black box method. However, it has
been shown (12) that output values from a multilayered perceptron
can be interpreted as Bayesian probabilities P(Cix) provided that
1) the training is accurate; 2) the outputs are of 1-of-M-type, which
mearns that the task is coded such that only one output unit should be
“on” at a time; and 3) a summed squared error or cross entropy error
function is used. In addition, the a priori class probabilities P(Ci) have
to be representative of actual use or test conditions. However, it is
possible to vary the class probabilities P(Ci) during classification
without retraining the network because P(Ci) only occur as a multi-
plicative term in the expression for P(Ci). One simply divides the
outputs by the training class probabilities and multiplies by the correct
class probabilities. The benefit from this Bayesian interpretation of the
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artificial neural network output units is that they can be subjected to
higher level decision analysis.
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