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Abstract

Artificial neural networks is one of the most
commonly used machine learning algorithms
in medical applications. However, they are
still not used in practice in the clinics partly
due to their lack of explanatory capacity. We
compare two case-based explanation meth-
ods to two trained physicians on analysis of
electrocardiogram (ECG) data from patients
with a suspected acute coronary syndrome
(ACS). The median overlaps of the top 5 se-
lected features between the two physicians,
and a given physician and a method, were ini-
tially low. Using a correlation analysis of the
features the median overlap increased to val-
ues typically in the range 2-3. In conclusion,
both our case-based methods generate expla-
nations somewhat similar to those of trained
expert physicians on the problem of diagnos-
ing ACS from ECG data.
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author(s)/owner(s).

1. Background

Artificial neural networks (ANN) has been gaining in-
terest in the medical community for quite some time
now, and has proven useful for many clinical decision
problems (Harrison & Kennedy, 2005; Goldman et al.,
1996; Baxt et al., 2002; Green et al., 2006; Green et al.,
2005; Kennedy & Harrison, 2006; Lisboa, 2002). Still,
as of today, there are very few live applications in use
at the clinics. Though the reasons for this low usage
are numerous (Bates et al., 2003), one major drawback
is the lack of interpretability of the decisions provided
by an ANN (Lisboa, 2002).

Most efforts of making sense out of an ANN decision
is based on rule extraction methods where the deci-
sion boundary is discretized into segments. There are
basically two ways of attacking this problem in neu-
ral networks. The first is the decompositional (Kol-
man & Margaliot, 2005) approach where the network
is scrutinized from within in order to extract useful
information about a decision. This is usually done by
analyzing the activations of individual nodes in the
network as well as the weights leading into them. This
methodology was used by (Kolman & Margaliot, 2005)
where they demonstrated that an ANN is mathemati-
cally equivalent to an all permutation fuzzy rule base.
Their work provided an explicit way of transforming
an ANN into a set of IF THEN rules. Despite be-
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ing intuitively attractive this approach lead to a large
number of rules that had to be reduced.

The second one known as the pedagogical (Saad &
Wunsch, 2007; Etchells & Lisboa, 2006) approach
treats the network as a black box. Here the analysis
is based on examining the relationship between what
is fed into the network with what is returned as out-
put. In a recent paper by (Etchells & Lisboa, 2006)
the pedagogical approach was used when developing
the orthogonal search based rule extraction (OSRE)
method that successfully extracted the exact rules for
the Monks (Thrun et al., 1991) data. They also point
out that, in the presence of large node output weights,
the decompositional approach may fail to accurately
describe the logic of the network.

Another way to analyze a neural network is by sensi-
tivity analysis where the main focus has been on ex-
tracting global properties. Usually this has been ac-
complished by analyzing the weights in the network
on a pattern by pattern basis. Interestingly enough
this has been considered a drawback by several au-
thors (Montafio & Palmer, 2003; Tchaban et al., 1998;
Wang et al., 2004).

From a medical application point of view it is often
necessary to provide an explanation underlying a given
decision. If the decision support is to function in a
stressful clinical setting (e.g. an emergency depart-
ment) then it is required to provide a fast explana-
tion for each case, easily interpretable by the opera-
tor. This case-based feed-back requirement is lacking
in most methods for analyzing the operation of a neu-
ral network ensemble. We believe this has severely
limited the full potential of using neural networks in
a clinical decision support system. The idea of using
the specific case at hand as the basis for the feed-back
algorithm is not new. In (Haraldsson et al., 2004) a
specific method was developed for electrocardiogram
curves, where the case-based feed-back was presented
as modified curves representing changes towards being
more healthy or non-healthy. In (Wall et al., 2003)
rules were extracted and later ranked depending on the
prediction of the case. The idea was that more com-
plex rules should be presented when the decision sup-
port system classified a patient as healthy. Conversely
if a patient were classified as non-healthy, less com-
plex rules were given as feed-back. Another approach
to case-based explanation can be found in (Caruana,
2000) where the reasoning behind the neural network
was presented as showing a set of similar cases.

When providing feedback to a physician in a clinical
situation we need to make sure that only the core of
the driving forces behind a classification is presented.

This means that a rule based approach, where pos-
sibly more than 10 rules are presented per case, will
be difficult to use in practice. Also many of the rules
will be non-specific for a given case since the rules are
extracted globally from the data set with the aim of
approximating the decision boundary of the ANN. To
us this suggests that any case-based feedback should
be derived from a single case and not the entire data
set. Case-based feed back is indeed dependent on the
question one is asking. In a clinical setting we often
find the important feed-back to simply be the set of
variables, most important for the decision. The two
approaches described in this study will both result in
a ranked list of important variables and the explana-
tion will simply consist of the topmost important ones,
for each case.

In this work a case study was performed where we ex-
plored the explanatory power of an ANN ensemble in
the context of predicting acute coronary syndromes,
in chest pain patients, from electrocardiogram (ECG)
data alone. Even though we only investigated this par-
ticular medical application, we still believe that the re-
sults are transferable to many other medical problems
as well.

2. Methods

2.1. Study population

A number of methods have been developed to support
the physicians in their decision making regarding pa-
tients presenting to the emergency department with
chest pain (Green et al., 2005; Kennedy & Harrison,
2006). One approach to detect ACS as early as pos-
sible at the emergency department is based on using
only the 12-lead ECG, as this is usually the first type
of examination that is performed. This approach was
carried out in (Green et al., 2006; Bjork et al., 2006)
and the current ECG data set originates from these
studies.

The data set was collected in 1997 and comes from 861
patients attending the Lund University emergency de-
partment with a principal complaint of chest pain. Pa-
tients who present at the emergency department with
chest pain or other symptoms suspicious of myocardial
infarction or unstable angina pectoris (i.e. acute coro-
nary syndromes, ACS) are common and represent a
heterogeneous group. Some have a myocardial infarc-
tion with a high risk of life-threatening complications
whereas others have completely benign disorders which
may safely be evaluated on an out-patient basis.

The diagnosis was either ACS or non-ACS. The 12-
lead ECGs were recorded by the use of computerized
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electrocardiographs (Siemens-Elema AB, Solna, Swe-
den), resulting in 14 measurements from 12 ECG leads
leading to a total of 168 variables. This list was re-
duced by experienced physicians in order to get rid of
redundant features and facilitate a more straightfor-
ward comparison between the physicians and the al-
gorithms. The final ECG variables selected was QRS
peak to peak amplitude, Q duration, Q amplitude, ST
amplitude, ST 2/8 amplitude, ST 3/8 amplitude, ST
slope, T amplitude and T_ amplitude in all 12 leads.
An illustration of an ECG can be seen in Figure 1. In
addition to these measurements we also added QRS
axis and the maximum QRS duration in any lead. In
total 110 variables were selected.

QRS
Complex

R

ST

/\

4

S

| QT Interval

Figure 1. A illustration of an ECG showing different parts
of the curve. All amplitudes are measured from the base-
line, except for QRS peak to peak which measures the total
height of the QRS complex.

2.2. Artificial neural network ensembles

The generalization performance of the ANN ensemble
was evaluated in a 10 fold cross validation (Baumann,
2003; Kohavi, 1995) loop where the entire data set was
split into 10 disjoint parts. Each of these parts served
as a test set for an ANN ensemble constructed from
the remaining 9 parts. The generalization ability of
the ensemble was then evaluated as the median ROC
area over these 10 data sets. The ROC area can be in-
terpreted as the probability of a randomly chosen sick
patient having a larger predicted risk than a patient
chosen at random from the control group (Hanley &
McNeil, 1982).

The ensemble (Krogh & Vedelsby, 1995; Dietterich,
2000) of networks was built by resampling the data

using a bagging (Breiman, 1996) procedure, that al-
lowed us to create more diverse ensemble members.
We chose an ensemble size of 25 since it has been shown
to be enough in numerical studies (Opitz & Maclin,
1999). Since we were training our ensemble for classifi-
cation purposes we used a cross-entropy error function
(Simard et al., 2003) with an added weight elimination
term that can improve its ability to generalize. The
complete error function is shown below
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where the t,, y,, w;i’s, and « is the target, network
output, parameters and weight elimination constant
respectively. The parameter « effectively controls how
much regularization we want to use and it was tuned
with respect to the ensemble and not to the individual
networks. All the individual networks had a hidden
layer with 15 nodes, which in our opinion is rather lib-
eral, since the regularization framework should prevent
the ensemble from overfitting the data.

All the models were carefully trained in an internal
cross validation loop to make sure that no information
leak occurred. In other words, every optimization step
was carried out on training data alone.

2.3. Explanatory models

We decided, together with experienced ECG readers,
that a good explanation model for the ECG prediciton
is simply to highlight the variables most significant to
a given decision. Though this may seem controversial
when compared to the traditional way of extracting
risk factors from a data set, we consider this approach
to be valid. In effect what we are doing is extracting
risk factors for a given patient rather than a given data
set and where the risk factors are standard measure-
ments easy to interpret. The two methods described
in this section work as follows:

1. generate a decision for a given patient;

2. rank all input variables according to some mea-
sure;

3. select the top five most important variables based
on their rank and present them to the physician.

Thus, for each patient we get an individual list of the
five variables most important to the decision as given
by the network ensemble.
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2.3.1. INPUT SENSITIVITY ANALYSIS

This approach is basically a modified partial derivative
of the ensemble output with respect to a given input
variable. It measures how sensitive the output of the
ensemble is to a small perturbation of that particular
input variable. This method was mainly developed for
use with patients that the network ensemble predicted
as uncertain, i.e. patients with predicted risks near
the prevalence of the disease in the data. However,
the method also works well on patients receiving more
certain predictions.

We modify the partial derivative in order to avoid
saturation effects that could potentially prevent us
from finding important features. An example of this
would be when the output of the ensemble is close
to either 1 or 0. The problem arises from the sig-
moid activation function o in the output node, since
ag—f) = o(x)(1 — o(x)). Thus confident predictions,
whose output is near 1 or 0, will never be considered
as having a large impact on the ensemble output. We
avoid this by defining an input sensitivity function

which is just the magnitude of the partial derivative
of the ensemble output with respect to a variable z;,
where the derivative of the output nodes, from the in-
dividual networks, has been removed. The first sum
runs over all ensemble members and the second over
the hidden nodes in each network. Also w;; is the
weight connecting ensemble members i’s output node
to its hidden node j, and ggj is just the partial deriva-
tive of the activation function g in that hidden node.
Similarly @;; is the weight connecting hidden node j
to input [ in network 3.

Si(x) is used to rank the importance of each variable.
The entire procedure is given in Algorithm 1.

Algorithm 1 Input sensitivity

input data x, ensemble net, input size L
for/=1to L do
Calculate S; = S;(x,net)
end for
Calculate R; = Rank(S)) V1e [1..L]
output R={l: R; <5}

2.3.2. EUCLIDEAN DISTANCE

The neural network ensemble produces a decision
boundary that separates the sick from the healthy in

the input space built from the 110 ECG variables.
Knowing where this boundary is located is useful since
we can then measure the distance, in all 110 variables,
to it from a given patient. In order to utilize this dis-
tance we need to know where the boundary is located
in input space. We find the closest! point p on the
decision boundary, corresponding to a network output
equal to the prevalence of ACS in our material, by net-
work inversion (Saad & Wunsch, 2007). The inversion
proceeds by gradient descent with an added adaptive
learning rate. The whole procedure is presented in
Algorithm 2.

The idea behind this approach is that the further away
the value of a variable is from the decision boundary
the more impact it had on the decision. The reason for
this assumption lies within the fact that for a variable
far away from the decision boundary one would have
to make substantial changes to it for it to affect the
decision. Thus, the confidence for the decision in this
variable is high.

Algorithm 2 Euclidean distance

input data x, ensemble net, input size L, target y
Calculate Errg = E(x) = (y — net(x,w))?
Set p=x and 19 = 0.2
repeat
p=p— 5@
Calculate Erriy1 = E(p)
if Erryy; < Errg then

Ne+1 = L1
else

Nt+1 = 097]15
end if

until Err, < 1077

Calculated =x — p

Calculate R; = Rank(|d;|) V1 € [1..L]
output R={l: R, <5}

2.4. Comparison with physicians

To evaluate the ranked list of features provided by the
above methods we asked two physicians to select the
most important features for each ECG in a group of
patients. Only patients diagnosed with ACS was eval-
uated during this comparison between the physicians
and our methods, since physicians in general have dif-
ficulties identifying specific factors indicating health.
In summary we handed out 344 ECGs from patients
with ACS and asked them to select the top five most
important features from the 110 available ones. No

!This is only approximately true since a line minimiza-
tion would be required in order to find it.
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priority was given among the five features, i.e. they
were all considered as equally important.

Any two feature lists, coming from either a method or
from a physician, are then compared to each other by
performing the intersection. This is then carried out
for each patient, which leaves us with a distribution of
intersections for any comparison between two feature
lists.

3. Results and discussion
3.1. Performance of the ANN ensemble

The average training and test ROC area (£ SD) for
the neural network ensemble, over the 10 fold cross
validation, was 98.7 (£0.12) and 83.4 (£0.33) respec-
tively. Although the numbers might suggest overfit-
ting, we found no advantage of adding more regulariza-
tion since the average test ROC area did not increase.
This effect can be explained by our use of ensembles,
where each MLP in the ensemble might be overfitted.
However, since they will be overfitted on different parts
of the data set, we get a well performing classification
machine when combining their individual predictions.
This of course depends on the weighting scheme used
for combining the individual predictions.

3.2. Features selected

A list of the features used from the electrocardiograms
and the leads in which these were found to be impor-
tant by the methods and the physicians is shown in
Figure 2, except QRS-axis and maximum Q_dur which
are lead independent. All features deemed as impor-
tant in at least one patient over the entire dataset was
included.

The figure illustrates an important distinction be-
tween the physicians and the methods, namely that
the physicians in general chose from a much larger
subset of features than the methods did. In effect,
the physicians chose from a total of 97 features. The
corresponding number for the methods was 47. So it
seems as though the methods are more selective when
it comes to the features it chooses to present. This
reduction in the number of features used by the meth-
ods most certainly arises from the high correlation be-
tween some of the features (see next section). A fact
that will be picked up by the network regularization
during the training of the network ensemble. This can
to some extent explain why the methods did not find
the amplitudes ST 2/8 and ST 3/8 to be important.
On the other hand the methods used features from
lead aVR somewhat more frequently compared to the
physicians. This can be explained by the fact that tra-
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Figure 2. The set of features that was considered impor-
tant in one or more patients over the entire ECG data set.
The x-axis shows the measurements we extracted from ev-
ery ECG. The y-axis represents the 12 different leads. A
feature is thus a measurement in a lead. Each feature is
color coded depending on which evaluator considered it
important.

ditional criteria for detecting ACS almost never use
aVR, hence the relatively low frequency among the
physicians. Both the methods and the physicians of-
ten used T_ amplitudes as an explanation for ACS
and this is not surprising since negative T-waves is a
classical sign of ACS.

In Table 1 we looked more closely into the distribu-
tion of the number of selected features within a given
comparison between two evaluators. In this setting we
denote an evaluator to be a given physician or method.
The table reveals the number of features i) not chosen
by either of the evaluators, ii) chosen by the right eval-
uator but not the left, iii) chosen by the left evaluator
but not the right, and iv) chosen by both evaluators.
As earlier stated physicians, in general, considered a
larger set of features as important than the methods
did. However, looking at the consensus number of im-
portant features, within the physicians and the meth-
ods we found that the numbers were 59 and 44 respec-
tively. Comparing these numbers to the ones in the
previous paragraph it is evident that the larger frac-
tion of features considered as important by the physi-
cians was mainly an effect of them disagreeing. The
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disagreement between the methods was significantly
lower (See Table 1).

Table 1. Description of the distribution of the selected fea-
tures for every pair of evaluators. The encoding in the
column names refer to the presence (+) and absence (-) of
selected features. The sign to the left (right) in each col-
umn refers to the first (second) evaluator in the pair. Thus
the encoding - +’ refers to the number of features selected
by the right evaluator but not by the left one.

EVALUATORS -- -+ +- ++
PHYS. 1 - PHYs. 2 13 34 4 59
PHYs. 1 - ALc. 1 27 20 37 26
PHYS. 1 - ALG. 2 27 20 38 25

PHYS. 2 - ALG. 1 10 7 54 39
PHYS. 2 - ALG. 2 12 5 53 40
ALc. 1 - ALc. 2 63 1 2 44

3.3. Analyzing the overlap

To answer the question of how similar the explana-
tions given by the physicians and the methods are, we
compared the list of important features that each of
them selected for each patient. We made every pos-
sible pairwise comparison between the two physicians
and methods. The relative frequencies of the overlaps
between two evaluators can be seen in Figure 3 and
Table 2 quantifies the overlaps by listing median, first
and third quantile values. We can conclude that the
physicians and the methods feature lists do not over-
lap to a large extent, in fact the median overlap is 0
for any comparison between a physician and a method.
To our surprise the overlap between the two physicians
was also low, indicating a degree of redundancy when
selecting important features. The overlap between the
two explanation methods was however large, as seen
in Figure 3 (left image), with a median of 5 out of 5
possible.

There was an overall low degree of agreement of the
features selected by the physicians and those high-
lighted by the methods. This low overlap can be ex-
plained by the high degree of correlation among the
measurements, which is partly an effect of the fact that
any two limb leads (I-IIL,aVF,aVR,aVL) can be used
to derive the other four limb leads when using the raw
ECG lead recording. This suggests grouping measure-
ments based on a correlation analysis. When searching
for features with a high degree of correlation, defined
as a Pearson correlation coefficient larger than 0.5, the
feature list was reduced down to a smaller effective
set of features. Typically 25 features remained after
the reduction. This vastly improved the agreement,
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Figure 3. Illustration of the relative frequencies of the over-
laps for each pair of evaluators with (right image) and with-
out (left image) correlation correction.

Table 2. The median, first and third quantile overlap of the
selected features for every pair of evaluators. Values before
and after correlation analysis are shown in the upper and
lower part, respectively.

EVALUATORS MepiaNn Q1 Q3
Puys. 1 - PHys. 2

Pavs. 1 - ALG.

PHyYs. 1 - ALc.

PHYS. 2 - ALG.
PHYS. 2 - ALG.
ALG. 1- ALG. 2

AFTER CORRELATION ANALYSIS

N =N =
QO OO OO
[N e N NN
Q== O O

PHys. 1 - PHays. 2 4 3 5
PHys. 1 - ALG. 1 3 1 4
PHYs. 1 - ALG. 2 3 1 4
PHys. 2 - ALG. 1 2 1 4
PHYS. 2 - ALG. 2 3 2 4
ALG. 1- ALG. 2 5 5 5

in both comparisons between physicians and compar-
ison between a given physician and method (see right
image in Figure 3). The median overlap between the
physicians increased to 4 and almost all comparisons
between a physician and a method obtained an overlap
of 3. However, after the correlation analysis, the me-
dian overlap between a given physician and method is
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still significantly lower than that of the two physicians.
There may be several reasons to why this happens. For
instance, we know that the neural network ensemble is
superior to the physicians when it comes to predicting
ACS from ECG data alone (Olsson et al., 2006; For-
berg et al., 2008). Thus the networks may very well
have found a pattern that is typically hidden from hu-
man ECG readers. This suggests that there may be a
biological interpretation of the ECGs not yet discov-
ered by experienced physicians.

4. Conclusions

In this work we investigated two methods of explaining
the predictions of an artificial neural network ensem-
ble, case by case, for 344 ECGs taken from patients
entering the emergency department at Lund Univer-
sity Hospital with a principal complaint of chest pain
suspicious of ACS. We compared the feedback given
by these methods to two experienced physicians and
found that they produced somewhat different explana-
tions, even after a correlation analysis. One interpre-
tation of this result is that the network ensemble finds
important information in the ECG that is typically
hidden from the human experts.

One of the main strengths of the network ensemble is
that it will be consistent in its predictions between dif-
ferent days. This means that if two patients, with the
exact same medical condition, walks in to the emer-
gency department on two separate occasions they will
get the same diagnosis. The same thing cannot be said
about physicians since they may vary in their predic-
tive abilities from day to day (Wennberg et al., 1982)
depending on a number of factors, e.g. fatigue, stress,
illness or lack of motivation. Because most emergency
departments are hectic working places, none of these
factors is uncommon.

An ensemble of artificial neural networks is a power-
ful classification tool for medical applications (Lisboa,
2002). Despite this promising ability ANN ensembles
is not currently used in the clinics, since its reasoning
is often complex and consequently difficult to explain
to a physician. We believe that case-based feed back is
the best way to address this problem, and even though
we only considered ECGs from chest pain patients, we
believe that the methods presented in this paper are
transferable to other medical applications as well.
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