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ABSTRACT: A novel approach is developed for preidigtoody trajectories for cancer progression, wieenaditional probabilities

of clinical data are modeled using Hidden Markovddbtechniques. Basically, each potential body isitencoded by an N-letter
code, and a disease trajectory is described irstefra string of letters. Patient data base recaréshen represented by such strings
with different lengths, start points and end poirfiee approach is explored using pathology datanfm-Hodgkin lymphoma
augmented with an artificial data base generatedrding to observed distributions in the clinicaltal For the Hidden Markov
Models a Bayesian approach is taken using the Hyldonte Carlo method, producing an ensemble of fsodeher than a single
one. Using a test set consisting of both real amtlom trajectories, we estimate the performanceuofHidden Markov Model
models and also extract most probable profilesefsine limited data set size the results are vecp@raging.

INTRODUCTION measurements; yet there should exist an underlgogsensus
string” in terms of a sequence of model probabditi

Predicting the anatomical pattern of involvementdifeases  corresponding to the natural progression of theatis.

such as cancer is important for prognosis, theeaqy clinical

follow-up. In principle, such trajectories represéme series. MATERIAL

However, data sampling in terms of patient checkaps

measurements are typically highly non-regular anwbmplete. We explore the approach using pathology data fon- no

Furthermore, a specific disease need not origimatae same  Hodgkin lymphoma with a reduced site code list €ldgle-

anatomical site in all patients. Hence standarde-eries letter codes) for describing disease progressignifiZTable 1

regression tools cannot be employed, and one lasftine to the reduced site codes and their corresponding iqalys

compute from data, conditional probabilities foe theries of  locations are given.

events. The predicted power of such an approachhtniig

limited for trajectories that occur infrequentlyhi$ requires  Table 1: The reduced site codes and the corresponding

building internal models of the data. We have padssuch an  locations.

approach by using Hidden Markov Model (HMM) techreg

[1] for modeling the probabilities for disease é@tpries. This Site Code Location

is done by encoding each potential body site byNaetter A (1) Miscellaneous / unclear
code, e.g. AB,C,...,N, and describing a diseaagdtory in B (2 Bone
terms of a string of letters, e.g. ABBDEEKLNA. Rati data Cc (3 Stomach
base records are then represented by such strittyslifferent D (4) Hollow viscus incl. repro organs
lengths, start points and end points, for example: E (5) Head, nose and mucosa
F (6) Mediastinum
GMMGLMMNN G (7) Solid organ incl. repro organs
MEMGA H (8) Skin
LLLLMMM I (9) Subcutis / soft tissues
AlAIA J (10) Serosa
JJJILLNDD K (11) Central nervous system
MHHAHAG L (12) Lymphoid, infradiaphragmatic
M (13) Lymphoid, supradiaphragmatic
The situation is very similar to the one occurring N (14) Marrow

multisequence alignment when comparing DNA (4-tetede)
or amino acid (20-letter code) strings within bfoimatics. In The database contains 6938 entries on 2652 pati@mis
that case one allows for deletions and insertigmestimably  5iihough limited in size, it is representative bé tnoisy and
originating during evolution), when comparing mai§ings 10 ihcomplete real-world conditions we intend to cluesize. The

obtain a "consensus string”. In our case deletiwhiasertion  gisribytion of record lengths and the number dfiea for each
correspond to the absence and irregularity of adini



letter are shown in Fig. 1. In order to fully testr algorithm we
have created an additional database with artificialta,
generated according to the distribution of everiseoved in
the clinical data.
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Figure 1: The distribution of patient record lengths in the
database (upper graph) and the number of occusdaceach
single letter code (lower graph).

Constraining the record lengths to the interval55-the final
data set consists of 359 patient records (sequehceduced
site codes). Shorter records than 5 turn out teobedifficult
for the HMM to handle. This data set is then diddato a
training set of 320 records and a test set of 3Padditional set
of 39 records from the artificial data set are abitdethe test set
in order to estimate the performance.

METHODS

In order to model the different code strings, repreing the
disease trajectories and allowing for gaps cornedipng to
non-existing measurements, a standard HMM architecis
used with a set of main, delete and insert nodss sg. 2). A
model of the data is then given by the transitiod amission
probabilities between the nodes (arrows). We usedsird
Dirichlet priors [1] to parameterize these probiéibs. Rather
than optimizing parameters once given the datafinding a
single model, we generate an ensemble of modelsinvi
Bayesian framework. In other words, distributiofhparameter
values are obtained rather than a single set.H®icalibration
procedure one needs an efficient sampling schenge.isA
frequently and successfully often used in the odntef
Bayesian neural network modeling [3], we employ khdrid
Monte Carlo (HMC) method [4]. Loosely speaking, timis
scheme Newtonian motions in parameter space (togjes)
are mixed with Metropolis jumps. The algorithmicgaeters,
trajectory lengths, step sizes and Metropolis stepsset to 7,
0.02 and 5000 respectively.

Figure 2: The standard HMM architecture used in this paper.
andE denote start and end state, respectively. Theejet@in
and insert states are markedlam, andi.

The length of the HMMs, M, is set to an estimategrage
record length of 10. The number of parameters @ HiMM,
with an N-letter code is given by (2M+1)N+9M+3, whifor
M=10 and N=14 is 387.

RESULTS

We explore the method in two ways. First we estimtite
performance of the HMMs, by computing log probaieii,
using parts of the real data set for training adtésting using
both real and artificial data sets. Second, we egenprofiles.
Since the real data set is somewhat insufficienttlie latter
purpose, these calculations are entirely based tigoartificial
data set.

Log probabilities: Once calibration is completed we are able
to compute scores (log probabilities) for new trageies, with

a high score indicating that the trajectory is &mio those that
were used to calibrate the HMM. Using the testisat consists
of both real and random trajectories, we can estinthe
performance of our HMMs. Figure 3 shows the distiin of
the scores for the real and artificial test recoodsng 100
HMMs sampled from the HMC procedure. The significan
difference implies that the HMMs have learned thepprties
of the patient records. The average and the vagiaicthe
scores are shown in Table 2.
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Figure 3: The distribution of the scores for the real tesbrds
(upper graph) and the artificial test records (logmaph).



Table 2: The average scores for the real and artificidl tes
records.

Mean score Variance
-15 6
-20 8

Real test records
Artificial test records

Profiles: Next we test how well the method can recover
profiles. To this end we generate artificial datatss
corresponding to three artificial patient profil@his data set
reflects the real patient records in terms of lengtriation and
noise levels. In Fig. 4 we show 12 randomly chossrords
from the artificial dataset, which in total contadi@0 records.
The lengths vary in the interval 10-20 with an ager length of
15. The number of site codes is 14, as for thedatl set.
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Figure 4: Site codes as functions of site positions for 12
randomly chosen records from the artificial data se

After calibration with the HMC procedure, one casmpute
the most probable emissions along the main staiesthie
HMM. In Fig. 5 the three artificial profiles are shn in the
upper graph and the corresponding estimated prdafil¢he
lower graph. As can be seen this profile is alnidshtical to
one of the artificial ones, which indicates the povef the
method.
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Figure 5: The three artificial profiles used when generatimg
records in the artificial data set (upper graphhe Tprofile
found by taking the most probable emissions aldregy rhain
state of the HMM (lower graph).

SUMMARY

A Hidden Markov Model approach is applied to mopatient
disease trajectories using clinical data for nomlgiin
lymphoma and artificial data created from clinicdhta
distributions. The results look very promising give limited
statistics:

e Calibrated HMMs are used predict the behavior wifichl
test sets with significance when compared to cpoeding
random data.

« HMMs calibrated with artificial data are able torctly
extract disease trajectory profiles.

The novel application of this methodology can beliagl in
health care situations far beyond the pathologglukge used as
an example here. For example, one could includbenstring
codes for various types of treatment.
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