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ABSTRACT: A novel approach is developed for predicting body trajectories for cancer progression, where conditional probabilities
of clinical data are modeled using Hidden Markov Model techniques. Basically, each potential body site is encoded by an N-letter
code, and a disease trajectory is described in terms of a string of letters. Patient data base records are then represented by such strings
with different lengths, start points and end points. The approach is explored using pathology data for non-Hodgkin lymphoma
augmented with an artificial data base generated according to observed distributions in the clinical data. For the Hidden Markov
Models a Bayesian approach is taken using the Hybrid Monte Carlo method, producing an ensemble of models rather than a single
one. Using a test set consisting of both real and random trajectories, we estimate the performance of our Hidden Markov Model
models and also extract most probable profiles. Given the limited data set size the results are very encouraging.

INTRODUCTION

Predicting the anatomical pattern of involvement of diseases
such as cancer is important for prognosis, therapy and clinical
follow-up. In principle, such trajectories represent time series.
However, data sampling in terms of patient checkups and
measurements are typically highly non-regular and incomplete.
Furthermore, a specific disease need not originate in the same
anatomical site in all patients. Hence standard time-series
regression tools cannot be employed, and one has therefore to
compute from data, conditional probabilities for the series of
events. The predicted power of such an approach might be
limited for trajectories that occur infrequently. This requires
building internal models of the data. We have pursued such an
approach by using Hidden Markov Model (HMM) techniques
[1] for modeling the probabilities for disease trajectories. This
is done by encoding each potential body site by an N-letter
code, e.g. A,B,C,...,N, and describing a disease trajectory in
terms of a string of letters, e.g. ABBDEEKLNA. Patient data
base records are then represented by such strings with different
lengths, start points and end points, for example:

GMMGLMMNN
MEMGA
LLLLMMM
AIAIA
JJJJLLNDD
MHHAHAG

The situation is very similar to the one occurring in
multisequence alignment when comparing DNA (4-letter code)
or amino acid (20-letter code) strings within bioinformatics. In
that case one allows for deletions and insertions (presumably
originating during evolution), when comparing many strings to
obtain a "consensus string". In our case deletion and insertion
correspond to the absence and irregularity of clinical

measurements; yet there should exist an underlying "consensus
string" in terms of a sequence of model probabilities
corresponding to the natural progression of the disease.

MATERIAL

We explore the approach using pathology data for non-
Hodgkin lymphoma with a reduced site code list (14 single-
letter codes) for describing disease progression [2]. In Table 1
the reduced site codes and their corresponding physical
locations are given.

7DEOH� �� The reduced site codes and the corresponding
locations.

Site Code Location
A   (1) Miscellaneous / unclear
B   (2) Bone
C   (3) Stomach
D   (4) Hollow viscus incl. repro organs
E   (5) Head, nose and mucosa
F   (6) Mediastinum
G  (7) Solid organ incl. repro organs
H  (8) Skin
I    (9) Subcutis / soft tissues
J   (10) Serosa
K  (11) Central nervous system
L  (12) Lymphoid, infradiaphragmatic
M (13) Lymphoid, supradiaphragmatic
N  (14) Marrow

The database contains 6938 entries on 2652 patients and
although limited in size, it is representative of the noisy and
incomplete real-world conditions we intend to characterize. The
distribution of record lengths and the number of entries for each



letter are shown in Fig. 1. In order to fully test our algorithm we
have created an additional database with artificial data,
generated according to the distribution of events observed in
the clinical data.

)LJXUH� �� The distribution of patient record lengths in the
database (upper graph) and the number of occurrences for each
single letter code (lower graph).

Constraining the record lengths to the interval 5-15, the final
data set consists of 359 patient records (sequence of reduced
site codes). Shorter records than 5 turn out to be too difficult
for the HMM to handle. This data set is then divided into a
training set of 320 records and a test set of 39. An additional set
of 39 records from the artificial data set are added to the test set
in order to estimate the performance.

METHODS

In order to model the different code strings, representing the
disease trajectories and allowing for gaps corresponding to
non-existing measurements, a standard HMM architecture is
used with a set of main, delete and insert nodes (see Fig. 2). A
model of the data is then given by the transition and emission
probabilities between the nodes (arrows). We use standard
Dirichlet priors [1] to parameterize these probabilities. Rather
than optimizing parameters once given the data, i.e. finding a
single model, we generate an ensemble of models within a
Bayesian framework. In other words, distributions of parameter
values are obtained rather than a single set. For this calibration
procedure one needs an efficient sampling scheme. As is
frequently and successfully often used in the context of
Bayesian neural network modeling [3], we employ the Hybrid
Monte Carlo (HMC) method [4]. Loosely speaking, in this
scheme Newtonian motions in parameter space (trajectories)
are mixed with Metropolis jumps. The algorithmic parameters,
trajectory lengths, step sizes and Metropolis steps are set to 7,
0.02 and 5000 respectively.

)LJXUH��� The standard HMM architecture used in this paper. 6
and ( denote start and end state, respectively. The delete, main
and insert states are marked as G, P, and L.

The length of the HMMs, M, is set to an estimated average
record length of 10. The number of parameters in the HMM,
with an N-letter code is given by (2M+1)N+9M+3, which for
M=10 and N=14 is 387.

RESULTS

We explore the method in two ways. First we estimate the
performance of the HMMs, by computing log probabilities,
using parts of the real data set for training and for testing using
both real and artificial data sets. Second, we compute profiles.
Since the real data set is somewhat insufficient for the latter
purpose, these calculations are entirely based upon the artificial
data set.

/RJ�SUREDELOLWLHV� Once calibration is completed we are able
to compute scores (log probabilities) for new trajectories, with
a high score indicating that the trajectory is similar to those that
were used to calibrate the HMM. Using the test set that consists
of both real and random trajectories, we can estimate the
performance of our HMMs. Figure 3 shows the distribution of
the scores for the real and artificial test records using 100
HMMs sampled from the HMC procedure. The significant
difference implies that the HMMs have learned the properties
of the patient records. The average and the variance of the
scores are shown in Table 2.

)LJXUH����The distribution of the scores for the real test records
(upper graph) and the artificial test records (lower graph).



7DEOH��� The average scores for the real and artificial test
records.

Mean score Variance
Real test records -15 6
Artificial test records -20 8

3URILOHV� Next we test how well the method can recover
profiles. To this end we generate artificial data sets
corresponding to three artificial patient profiles. This data set
reflects the real patient records in terms of length variation and
noise levels. In Fig. 4 we show 12 randomly chosen records
from the artificial dataset, which in total contain 700 records.
The lengths vary in the interval 10-20 with an average length of
15. The number of site codes is 14, as for the real data set.

)LJXUH� �� Site codes as functions of site positions for 12
randomly chosen records from the artificial data set.

After calibration with the HMC procedure, one can compute
the most probable emissions along the main states for the
HMM. In Fig. 5 the three artificial profiles are shown in the
upper graph and the corresponding estimated profile in the
lower graph. As can be seen this profile is almost identical to
one of the artificial ones, which indicates the power of the
method.

)LJXUH����The three artificial profiles used when generating the
records in the artificial data set (upper graph). The profile
found by taking the most probable emissions along the main
state of the HMM (lower graph).

SUMMARY

A Hidden Markov Model approach is applied to model patient
disease trajectories using clinical data for non-Hodgkin
lymphoma and artificial data created from clinical data
distributions. The results look very promising given the limited
statistics:

•  Calibrated HMMs are used predict the behavior of clinical
test sets with significance when compared to corresponding
random data.

•  HMMs calibrated with artificial data are able to correctly
extract disease trajectory profiles.

The novel application of this methodology can be applied in
health care situations far beyond the pathology database used as
an example here. For example, one could include in the string
codes for various types of treatment.
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