
March 1992LU TP 92-11Neural Networks for Optimization Problems withInequality Constraints - the Knapsack ProblemMattias Ohlsson1, Carsten Peterson2 and Bo S�oderberg3Department of Theoretical Physics, University of LundS�olvegatan 14A, S-22362 Lund, SwedenSubmitted to Neural ComputationAbstract:A strategy for �nding approximate solutions to discrete optimization problems with inequality con-straints using mean �eld neural networks is presented. The constraints x � 0 are encoded by x�(x) termsin the energy function. A careful treatment of the mean �eld approximation for the self-coupling parts ofthe energy is crucial, and results in an essentially parameter-free algorithm.This methodology is extensively tested on the knapsack problem of size up to 103 items. The algo-rithm scales like NM for problems with N items andM constraints. Comparisons are made with an exactbranch and bound algorithm when this is computationally possible (N � 30). The quality of the neuralnetwork solutions consistently lies above 95% of the optimal ones at a signi�cantly lower CPU expense.For the larger problem sizes the algorithm is compared with simulated annealing and a modi�ed linearprogramming approach. For "non-homogeneous" problems these produce good solutions, whereas for themore di�cult "homogeneous" problems the neural approach is a winner with respect to solution qualityand/or CPU time consumption.The approach is of course also applicable to other problems of similar structure, like set covering.1mattias@thep.lu.se2carsten@thep.lu.se3bs@thep.lu.se

BackgroundFeed-back arti�cial neural networks (ANN) have turned out to be powerful in �nding goodapproximate solutions to di�cult combinatorial optimization problems [1, 2, 3, 4]. Thebasic procedure is to map the problems onto neural networks of binary (Ising spin) orK-state (Potts spin) neurons with appropriate choice of energy functions, and then to �ndapproximate minima of the energy using mean �eld theory (MFT) techniques. In this wayessentially "black box" procedures emerge.The application areas dealt with in refs. [1, 2, 3, 4] (traveling salesman, graph partitionand scheduling) are characterized by global equality constraints, which can be implementedas quadratic penalty terms. These contain self-interaction parts (diagonal terms), whichcan be balanced by counterterms to assure reliable MFT dynamics.However, in many real-world optimization problems, in particular those of resource allo-cation type, one has to deal with inequalities. The objective of this work is to developa mapping and MFT method to deal with this kind of problem. As a typical resourceallocation problem we choose the knapsack problem for our studies. Although arti�cial,we feel it is a realistic enough test bed. A crucial ingredient in our approach is to avoidself-couplings by a proper MFT implementation of the constraint terms.The Knapsack ProblemIn the knapsack problem one has a set of N items i with associated utilities ci and loadsaki. The goal is to �ll a \knapsack" with a subset of the items such that their total utility,U = NXi=1 cisi (1)is maximized, subject to a set of M load constraints,NXi=1 akisi � bk ; k = 1;M (2)de�ned by load capacities bk. In eqs. (12) si are binary f0; 1g decision variables, represent-ing whether item i goes into the knapsack. The variables (ci, aki and bk) that de�ne theproblem are all real numbers.We will consider a class of problems, where aki and ci are independent uniform randomnumbers on the unit interval, while bk are �xed to a common value b. With b � N=2,the problem becomes trivial { the solution will have almost all si = 1. Conversely, with1

b << N=4, the number of allowed con�gurations will be small and an exact solution caneasily be found. We pick the most di�cult case, de�ned by b = N=4. The expected numberof used items in an optimal solution will then be about N=2, and an exact solution becomesinaccessible for large N .In the optimal solution to such a problem, there will be a strong correlation betweenthe value of ci and the probability for si to be 1. With a simple heuristic based on thisobservation, one can often obtain near-optimal solutions very fast. We will therefore alsoconsider a class of harder problems with more homogeneous ci distributions { the extremecase is when ci are constant, and the utility proportional to the number of items used.We note in passing that the set covering problem is a special case of the general problem,with random aki 2 f0; 1g, and bk = 1. This de�nes a comparatively simple problem class,according to the above discussion, and we will stick to the knapsack problem in whatfollows.Neural Network Formulation and Solution StrategyNeural MappingWe start by mapping the problem de�ned in eqs. (1,2) onto a generic neural networkenergy function E E = � NXi=1 cisi + � MXk=1� NXi=1 akisi � bk! (3)where � is a penalty function to ensure that the constraint in eq. (2) is ful�lled. Thecoe�cient � governs the relative strength between the utility and constraint terms. Forequality constraints an appropriate choice of �(x) would be �(x) = x2. Having inequalitieswe need a �(x) that only penalizes con�gurations for which x � 0. One possibility is touse a sigmoid, �(x) = g(x;T) (see �g. 1a),g(x;T) = 12 [1 + tanh(x=T)] (4)This option has the potential disadvantage that the penalty is the same (=1) no matterhow badly the constraints are violated. An alternative that gives penalty in proportion tothe degree of violation is �(x) = x�(x) (5)This function (see �g. 1b) has the additional advantage that no extra parameter like thetemperature T in the sigmoid is needed. The slope of � is implicitly given by � in eq. (3).The x�(x) alternative consistently gives better performance and is used throughout thispaper. 2

(a) (b)Figure 1: (a) The sigmoid g(x;T) of eq. (4). (b) The penalty function x�(x) of eq. (5).Mean Field DynamicsWe want to minimize eq. (3) with the mean �eld approximation (MFT), which has turnedout to be very powerful for other optimization problems [2, 3, 4, 5]. Due to the non-polynomial form of the constraint terms (eqs (4,5)) special care is needed when implement-ing the MFT approximation. Recall that the MFT approximation consists of replacing thebinary variables si with mean �eld variables at temperature T, vi =< si >T and solvingthe MFT equations vi = g(�@E@vi ;T) (6)by iteration. In problems with equality constraints implemented by quadratic penaltyterms the diagonal pieces are compensated for by adding appropriate self-coupling terms.Such a procedure is not trivial in this case of strongly non-linear constraint penalties.Instead, we avoid self-couplings altogether, by replacing @E=@vi with the di�erence in Ecomputed at vi = 1 and vi = 0 respectively. One obtains� @E@vi ! ci � � MXk=1 24�(NXj=1 akjvj � bk)jvi=1 � �(NXj=1 akjvj � bk)jvi=035 (7)Eqs. (6,7) are solved iteratively by annealing in T. To avoid small �nal constraint violations,we employ a progressive constraint term, � / 1=T . This means that the slope of x�(x)(see �g. 1 b) increases during convergence. We will present a standardized scheme belowwhen testing the algorithm numerically. The number of computational steps for solvingeqs. (6, 7) scales like NMn� , where n� is the number of iterations needed for convergencewhich turns out to be problem size independent (as was observed in other MFT approachesto optimization problems [2, 4, 5]). A factor N has been gained by "recycling" the sumsappearing in the argument of �. 3

High-T �xpoints and critical temperatureAt a high temperature T , the system will approach a �xpoint with all vi close to 1/2 (see�g. 2). With random aki and ci on [0; 1], and �xed bk = b, two distinct types of high-Tbehaviour emerge.� With b well above bcrit � N=4, all constraints are safe at high T , and the system isstuck at a trivial �xpoint, vi = g(ci;T).� With b instead well below bcrit, all constraints are violated at high T , and the trivial�xpoint is instead vi = g(ci � �Pk aki;T).In both cases a statistical analysis shows that vi remain close to 1/2 forT >> 1 + �M 1p2� Z � b�N=8pN=48�1 e�y2=2dy: (8)Thus, in the case at hand of b = bcrit, a suitable starting point for the annealing will beT � 10.Other ApproachesIn order to see how well our MFT algorithm works we need to compare it with otherapproaches. For reasonably small problem sizes it is feasible to use an exact algorithm,branch and bound, for comparison. For larger problem sizes, one is con�ned to otherapproximate methods, simulated annealing [6], greedy heuristics and linear programmingbased on the simplex method [7].Branch and Bound (BB) The knapsack problem is NP-complete, and the e�ort to �ndthe optimal solution by brute force grows like 2N . Using a branch and bound tree searchtechnique one can reduce the number of computational steps. This method consists in goingdown the search tree, checking bounds on the constraints or on the utility at each level,thereby avoiding unnecessary searching. In particular for non-homogeneous problems, thismethod is facilitated by ordering the ci's according to magnitude:c1 > c2 > :::: > cN (9)For problems where the constraints are "narrow" (b not too large) this method can requiresubstantially lower computation needs. However, it is still based on exploration and it isonly feasible for problem sizes less than M = N � 30 � 40.4

0 200

0

1

Number of iterationsFigure 2: Development of vi for a N=M=40 knapsack problem with ci=rand[0.45,0.55].Greedy Heuristics (GH) This is a simple and fast approximate method for a non-homogeneous problem. Proceeding from larger to smaller ci (cf. eq. (9)), collect everyitem that does not violate any constraint. This method scales like NM .Simulated Annealing (SA) Simulated annealing [6] is easily implemented in terms ofattempted single-spin
ips, subject to the constraints. Suitable annealing rates and otherparameters are given below. This method also scales like NM times the number of itera-tions needed for thermalization.Linear Programming with Greedy Heuristics (LP) Linear programming based onthe simplex method [7] is not designed to solve discrete problems like the knapsack one.It does apply, however, to a modi�ed problem with si 2 [0; 1]. For the ordered (eq. (9))non-homogeneous knapsack problem this gives solutions with a set of leading 1's and a setof trailing 0's, with a window in between containing real numbers. Augmented by greedyheuristics for the elements in this window, fairly good solutions emerge. The simplexmethod scales like (N2M2). 5

Algorithm ci=rand[0,1] ci=rand[0.45,0.55] ci=0.5Perf. CPU time Perf. CPU time Perf. CPU timeBB 1 16 1 1500 1 1500NN 0.98 0.80 0.95 0.70 0.97 0.75SA 0.98 0.80 0.95 0.80 0.96 0.80LP 0.98 0.10 0.93 0.25 0.93 0.30GH 0.97 0.02 0.88 0.02 0.85 0.02Table 1: Comparison of performance and CPU time consumption for the di�erent algorithms on a N=M=30problem. The CPU consumption refers to a DEC3100 workstation.Numerical ComparisonsNeural Network (NN). Convenient measures for monitoring the decision process arethe saturation � = 4N Pi(vi � 0:5)2 and the evolution rate � = 1N Pi(�vi)2, where �vi =vi(t+�t)� vi(t). The saturation starts o� around 0 at high temperature T, and increasesto 1 in the T ! 0 limit. We have chosen an annealing schedule where T0=10, Tn = kTn�1,where k = 0:985 if 0:1 < � < N�1N and 0:95 otherwise. At each temperature every neuronis updated once. We employ a progressive constraint coe�cient, � = 0:1=T , to avoid small�nal constraint violations. The annealing is terminated when � > 0:999 and � < 0:00001.Should the �nal solution violate any constraint (which is very rare), the annealing is redonewith a higher �. In �g. 2 we show a typical evolution of fvig for an N =M = 40 problem.Simulated Annealing (SA). The performance of this method depends on the annealingschedule. In order to compare the performance of this method with that of the neuralnetwork approach we have chosen these parameters such that the time consumption of thetwo methods is the same. This is accomplished with T0 = 15, Tfinal = 0:01 and annealingfactor k = 0:99. First we compare the NN, SA and LP approaches with the exact BBfor a N = M = 30 problem. This is done both for non-homogeneous and homogeneousproblems. The results are shown in table 1. As expected LP and in particular GH bene�tfrom non-homogeneity both quality and CPU-wise, while for homogeneous problems theNN algorithm is the winner. For larger problem sizes it is not feasible to use the exact BBalgorithm. The only thing we can do is to compare the di�erent approximate approaches,NN, SA and LP. The conclusions from problem sizes ranging from 50 to 500 are sameas above. The real strength in the NN approach is best exploited for more homogeneousproblems. In �gs. 3 and 4 we show the performance and CPU consumption for N 2 [50; 500]with M = N . 6

0.98

0.99

1

1.01

1.02

1.03

100 200 300 400 500 600

Pe
rf

or
m

an
ce

Problem-size N

NN/SA

(a)

LP/SA

0.98

0.99

1

1.01

1.02

1.03

100 200 300 400 500 600

Pe
rf

or
m

an
ce

Problem-size N

NN/SA

(b)

LP/SA

Figure 3: Performance of the neural network (NN) and linear programming approaches (LP) normalizedto simulated annealing (SA) for problem sizes ranging from 50 to 500 withM = N . (a) ci=rand[0.45,0.55]and (b) ci=0.5.SummaryWe have developed a neural mapping and MFT solution method for �nding good solutionsto combinatorial optimization problems containing inequalities. The approach has beensuccessfully applied to di�cult knapsack problems, where it scales like NM . For thehard homogeneous problems the MFT approach is very competitive as compared to otherapproximate methods, both with respect to solution quality and time consumption. It alsocompares very well with exact solutions for problem sizes where these are accessible.In addition, the MFT approach of course has the advantage of being highly parallelizable.This feature was not explored in this work.In ref. [8] an ANN approach di�erent from ours was applied to the knapsack problem.Since the di�cult parameter region was not exploited there, a comparison would not bemeaningful. 7

1

10

100

1000

10000

100 200 300 400 500 600

C
PU

-T
im

e

Problem-size N

NN

(a)

LP
SA

1

10

100

1000

10000

100 200 300 400 500 600

C
PU

-T
im

e

Problem-size N

NN

(b)

LP
SA

Figure 4: CPU consumption of the neural network (NN) and linear programming approaches (LP)normalized to simulated annealing (SA) for problem sizes ranging from 50 to 500 with M = N . (a)ci=rand[0.45,0.55] and (b) ci=0.5. The numbers refer to DEC3100 workstations.References[1] J.J. Hop�eld and D.W. Tank, "Neural Computation of Decisions in OptimizationProblems", Biological Cybernetics 52, 141 (1985).[2] C. Peterson and B. S�oderberg, "A New Method for Mapping Optimization Problemsonto Neural Networks", International Journal of Neural Systems 1, 3 (1989).[3] C. Peterson, "Parallel Distributed Approaches to Combinatorial Optimization", Neu-ral Computation 2, 261 (1990).[4] L. Gisl�en, B. S�oderberg and C. Peterson, \Teachers and Classes with Neural Net-works", International Journal of Neural Systems 1, 167 (1989).[5] L. Gisl�en, B. S�oderberg and C. Peterson, "Scheduling High Schools with Neural Net-works", Lund Preprint LU TP 91-9 (submitted to Neural Computation) (1991).[6] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, "Optimization by Simulated Annealing",Science 220, 671 (1983). 8

[7] See e.g. W.P. Press, B.P Flannery, S.A. Teukolsky and W.T. Vettering, NumericalRecipes, The Art of Scienti�c Computing, Cambridge University Press, Cambridge,(1986).[8] V.V. Vinod, S. Ghose and P.P. Chakrabarti, "Resultant Projection Neural Networksfor Optimization Under Inequality Constraints", Kharagpur Department of ComputerScience Preprint (1990).

9

