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Abstract:

The deformable templates method for track finding in high energy physics is reviewed
and extended to handle multiple and secondary vertex positions. An automatized
minimization method that handles different types of parametrizations is derived. It
is based on the gradient descent method but modified with an explicit calculation of
the natural metric. Also a simplified and more intuitive derivation of the algorithm
using Potts mean field theory equations is given.
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1 Motivation and Results

An important problem in the area of pattern recognition and computer vision is
detection of curves. In the context of high energy physics track finding represents
such a problem. This is a combinatorial optimization problem; given a set of detector
signals reconstruct particle trajectories subject to smoothness constraints. In most
cases, the parametric form of the tracks are known in advance - straight lines or
helices.

Artificial Neural Networks (ANN) techniques, and variations thereof, have shown
great power in finding approximate solutions to difficult combinatorial optimization
problems [1, 2]. The ANN technique has also been used for the track finding problem
with encouraging results. In the pure neural approach [3, 4] one considers tracks as a
number of consecutive line segments. The idea is to assign a binary decision element
(neuron) s;; between two signals points ¢ and j, which is one if 7 is connected to j
and zero otherwise. An energy function in terms of s;; is then constructed such that
smooth tracks with no bifurcations correspond to minima. Initial explorations have
given encouraging results with respect to solution quality for toy-sized problems with
no noise [3, 4]. In ref. [5] realistic cuts on the number of degrees of the freedom
were made on real TPC data from the CERN ALEPH detector and the performance

turned out to be compatible with

the conventional method used in the ALEPH detector, both with respect to quality
and speed for large problem sizes. Another approach for the track finding problem
is the use of rotors [6]. A rotor 5;, which is a unit vector, is associated with each
signal point 7. In a local approach [7] each rotor interact with other rotors (within
some neighborhood) and with line segments vectors r;;. Again, an energy function is
constructed that lines up the rotors to form smooth tracks.

The above methods are constructed to solve the combinatorial part of the track
finding problem, i.e. to assign signal points to tracks. In reality one also needs to
know the momenta corresponding to the tracks. In the neural approach one then
has to augment the algorithm with some fitting procedure. In most track finding
problems the parametric form of the tracks are know in advance, but in the neural
approach the network has no such prior knowledge. It would be advantageous to
have an algorithm that does both the assigning and the fitting simultaneously.

One step in this direction has been taken in ref. [8] where the rotor approach [7] has
been modified to take into account the parametric form of the tracks. This algorithm

has been tested on real data with encouraging results.

This paper is based on the deformable templates [9], or the elastic nets [10], approach.



The basic idea of this approach for track finding was presented in ref. [11] and in
ref. [12] it was developed further with respect to theoretical understanding and
experimental applications. Another, closely related, approach was independently
pursued in ref. [13].

In this paper the elastic arm approach is extended and generalized in different direc-
tions with the following main results:

o The main task of the elastic arms algorithm is to minimize the energy function
E.5. The efficiency of the algorithm depends on how fast it converges towards
the global minimum of E.g. In ref. [12] we used the standard gradient descent
method but with individual updating parameters?. In this paper we modify the
gradient descent method as to compensate for the different metric imposed by
the parameters describing the track. As a result the convergence towards the
minimum is faster and the number of updating parameters are reduced to one,
it 1s basically a “black box” algorithm.

e Furthermore, we show how the elastic arms algorithm also can be understood
more intuitively in the standard mean field theory. In this treatment zero-
neurons, with the corresponding V;q as the probability of z being a noise signal,
appear in a very natural way. Thus, an event can be viewed as a set of real
tracks with a given parametrization plus an extra “noise-track” consisting of all
noise signals.

e Even though “real” data was used in the simulations of ref. [12] we assumed
that all tracks passed trough the a priori known origin. In reality there may be
more than one vertex position and also secondary vertex positions coming from
decaying particles. We therefore extend the formalism to include multiple and
secondary vertex positions.

o A complication that may occur in some detectors is the presence of left-right
ambiguities in the data set. Following ref. [14] we describe how to handle this
problem.

The paper is organized as follows: In Section 2 we review the elastic arms algorithm
plus a simplified derivation using Potts mean field theory equations. Section 3 deals
with geometry and parametrization and in section 4 we modify the gradient descent
method by metric considerations. The necessary extensions of the algorithm to handle
multiple and secondary vertex positions are presented in Section 5. Section 6 contains
a small discussion concerning the initialization of the algorithm and finally a brief
summary can be found in section 7.

2In the context of ANN these parameters are often called learning rates.



2 The Elastic Arms Algorithm

2.1 Review of the Algorithm

An event is defined as a set & = {&, ..., Zx} of N signal points. These Z;’s can be
either 2- or 3-dimensional. Each event also corresponds to a set of particle trajectories
(tracks) and the task is to find these tracks, given Z. For this purpose a set @ =
{71, ..., Tar} of M template tracks, or elastic arms, are introduced, where an arm a is
completely described by its P parameters (7(!), ..., w(F)).

We state the track finding problem as finding minima to the energy function

E({Su}; ® ZZSWMW )+A§(§Sm—1)2, (1)

i=1la=1 =1 \a=1
where S;,® is a binary decision unit (neuron) defined as

~J 1 if signal 7 is assigned to arm a
Sia { 0 otherwise (2)

M;.(Z,7) (or just M;,) is the minimal squared Eucledian distance between signal
point ¢ and arm a. Since each signal ¢ can belong to only one track or no track at
all, £ must be minimized with the condition

ZSZ-azl or 0 V. (3)

Finally, the parameter A imposes a penalty if >, S;, = 0, that is, if signal 2 is not
assigned to any arm. In this way the parameter A governs the amount of noise the
algorithm allows for.

In order to avoid local minima when minimizing E one often introduces noise? into
the system. A commonly used procedure for doing this is simulated annealing [15]
where the system is allowed to thermalize for a sequence of temperatures T, > T,,_; >
.. > Ty according to the Boltzmann distribution

P({Si.}; ®) = Z e~ PE({Sia}; 7r) (4)
where 8 = 1/T and Z is the usual partition function.

We proceed by calculating the marginal probability distribution
m(7) = Z P({Si}; 7) , (5)
{Sia}

3We use the notation S;, rather than V;, as in ref. [12] for binary variables.
4Not to be confused with noise signals




by summing out the neuronic degrees of freedom, S;,. Doing this (for details see ref.
[12]) we end up with

1 ,
Py (%) = e PP (6)

where we have introduced the effective energy E .4 as
. 1
Eeﬂ(ﬂ-):_ﬁzlog ﬂA—I—Ze Miay (7)

The most probable configurations according to eq. (6) corresponds to the minima of
E . Using a gradient descent method to minimize F. one gets an updating rule
according to

OF oM,
BYyYLlieff k Z ia

Awgk) =

where 7{*) is the updating parameter and the Potts factor Vi, is given by
e_ﬂMia

e_ﬂA _|_ E{)ﬁl e_ﬂMib )

~

(9)

ia —

This algorithm has similarities with a collective self-organizing network [16]. The
main difference is the neighborhood function. In our approach every signal is taken
into account when fitting a certain arm, but they are weighted according to the
Potts factor, eq. (9). In the low temperature limit the competitive winner-takes-
all updating is retrieved. Another difference is the zero-neuron which enters the
denominator of the Potts factor (9), as e™*. The parameter A governs the amount
of noise points the algorithm allows for.

V., can be interpreted as the probability for signal 7 to belong to arm a. In the limit
T — 0 (8 — o0) V,, reduces to S;,, which means that V,, can also be viewed as the
thermal average of S;,; Vie = < Siq >7.

2.2 Mean Field Theory Picture

Eq. (8) can also be understood in a simple and more intuitive way using the Potts
mean field theory (MFT) equations [1]. Let us introduce N zero-neurons S;o (i =
1,...,N), such that M;op = A V i. A suitable energy function E’, equivalent to eq.
(1), is given by

E'({Su};7 Z Z SiaMia (10)

2=1 a=0



which should be minimized together with the Potts condition

M
Y Siw=1 Vi. (11)
a=0
This condition is, because of the N zero-neurons, completely equivalent to the pre-
vious condition, eq. (3). Using gradient descent to minimize E’, considering S;, as a
logical constant, gives
oM,
5 - (12)
onlF)

Now, replace the S;, with its thermal average V,, = < S;, >r. According to the
MFT equations [1] V,, is calculated as

Aﬂ'((lk) = _ﬂ,(lk) Z Sia

eUia

Vie = S o
E{)ﬁﬂ eUia ?

(13)

where the local field U;, is given by

OF'

= —8M,. (14)

Substitute this into eq. (13),

e—BM;

E{)ﬁo e_ﬂMib
e—BM;

T e B Y M py, (15)

Vi =

which is the same as eq. (9).

The N zero-neurons were introduced because of the presence of noise signals in the
data, 1.e. signals which should not be assigned to any real track. It is therefore
natural to interpret Vj as the probability for signal ¢ to be a noise signal, and V4 1s
given by

e P

I/':'0 = M .
e_ﬂA —|_ Eb:l e_ﬂMib

(16)

With this interpretation V;q can be used as a tool to identify non-fitted signals. If
Vio = 1 after the annealing of the algorithm (7' — 0), then ¢ is a possible noise signal
or a signal belonging to a track not included in the formalism. This observation will
be used in section 5.2 to identify secondary tracks.

It 1s also interesting to see how the different V,4’s develop with decreasing temperature
(iteration step). If we choose A to be the square of some typical distance representing



the error in the initialization of the algorithm then, at high temperature, Vo, > 0
for most of the signals. As the temperature decreases “decisions” are made whether
signal 7 belongs to a track or not. This can be seen in fig. (1) where the different Vj’s
are plotted against the number of iterations. The V,y’s goes to either 0, meaning that
signal 1 s assigned to a track, or 1, corresponding to z being a noise signal. Decisions
are not made at a common temperature, instead the different Vjy’s converge at differ-
ent temperatures (iteration steps). We also see that, already at a high temperature,
Vo =~ 1 for some signals, meaning that there is no initial arm close to these signals -
they can form possible secondary tracks (see section 5.2).
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Figure 1: Development of the V;o’s for a generated CERN DELPHI TPC event (371 signal points).

3 Geometry and Parametrization

The idea of the elastic arms algorithm is to match the observed events into a known
parametrized model. The type of model, of course, depends on what kind of tracks
we want to describe. In the case of straight tracks in three dimensions a track a is
defined by (0,, ¢a, 22, y2, 2°) through the obvious parametrization

z = tcosl,sin¢, + z,
= tsinf,sin ¢, + yo (17)
z = tcosg, + zo



where ¢ > 0. In this paper, however, we only consider tracks coming from detectors
with a constant magnetic field in the z-direction, B = (0,0, B). Furthermore, we
neglect energy losses - all tracks are helices in the #y-plane. In three dimensions, a
track is thus a spiral emerging from the vertex position (z°,y°, 2°) with an emission
angle 6 in the zg-plane, the curvature k (also referring to the Zy-plane) and finally
the parameter ¥ governing the extension in the longitudinal direction. In terms of
these parameters (., 8, v, z° y°, 2°) a point (z,y, z) on the track a is given by

1
r = —[sin(b, + K.t) —sinb,] + z°
ﬂa
1
y = —[—cos(0, + Kkat)+ cosb,] + o (18)
Kq
z = "ot + 2z,

where t € [0, 7/|Kkq|]. Note that ¢t has the dimension of length, making v a dimension-
less scale parameter. The distance measure M;, is given by®

Miy(%,7,) = MEY + M)

= iz (1 — \/[na(mi —z2) + sin 0,1]2 + [ka(y: — y2) — cos 0,1]2)2 (19)

K./(l

+ (zi - ZZ - 7at)2
where ¢ is computed from

1 ( (z; — x3) cos b, + (y; — y2)sinb, )

t = —arct
py arctan { = + (z; — 29) sin b, — (y; — y2) cos b,

Ka

(20)

The above parametrization does not include any position dependent k. Particles with
varying curvature have very low energy and usually one wants to ignore this kind of
particles. If, however, one wants to detect low energy particles one would have to use
a new parametrization for the arm to include energy losses.

4 A Refined Gradient Descent Method

4.1 Metrical Considerations

The efficiency of the algorithm depends upon how fast E.z converges towards its
global minimum. A straight forward way to minimize E.4 is to use the gradient
descent method; minimize by taking small steps in the negative gradient direction

5M;, is slightly different from that of ref. [12]



(see eq. (8)). The gradient descent update equation can be written in a general way
as

P
OF
k - eff
Arh) = —Ezggkjlm ; (21)
J:

where € 1s a small number. In the standard gradient descent method, g is simply
the identity matrix. Since the parameters 7 = (x, 0,7, z° y° 2°) are different with
respect to dimensions and bounds, a natural extension is to have different learning
rates for different parameters. This was done in ref. [12] where we used a diagonal

matrix g~* according to
] (=)0 0
g =10 2 o[, (22)
€\ o 0 M

where the update parameters (learning rates) (7(®), 7(®), 5()) were chosen on an in-
tuitive and exploratory ground. We will now extend the choice of g to include “off
diagonal” elements. FEach A7(®) will then be a mixture of all partial derivatives
OF /079 (j =1, ..., P). One way of doing this is to use the second derivative H of
E.5 and simply let g = H. To show this let us expand E.5 around a point 7,

Eep(7) = Eeg(7p) + VEeglz - (7 —7p) + %(7? ) H-(T—m),  (23)
with the Hessian H given by
2
= g0, (24)
Let 7,, denote the point for which E.g has a minimum, then
VEgl; =0. (25)
This condition, put into eq. (23), gives the desired updating equation
AR =7, -7, =—H"'-VEg . (26)

The calculation of H is in our case, unfortunately, very computationally demanding
and would therefore not result in a faster algorithm. We will instead make another
approach and use matrix elements g;; defined by the equation

ds® = Zgijdﬂ'(i)dﬂ'(j) , (27)

ij
where ds and dr i1s the distance between two neighboring points in the usual space
and the space defined by the coordinates 7 respectively (the right-hand member of



the above equation is called the metric of the Riemannian space). If (7(1), ..., 7(P))
are the usual Cartesian coordinates (z,y, z), then ds®* = dz? + dy® + d2® and g
reduces to the identity matrix. In our formalism, however, we use the coordinates
(x,0,v,z°%y° 2°) rather than (z,y, z) to describe the elastic arms. The point-wise
transformation between the two coordinate systems is given by the parametrization,
eq. (18), from which ds can be calculated as

. 0s | .
ds = Xk: 87r(k)d7r %dn + ...+ %dz ) (28)

Since M;, is a measure of the minimal distance between an arm a and a point ¢ the

dSJ_

@ (b)

Figure 2: (a). The measure M;,, which is the closest distance between arm a and point 7. (b).
The small displacement di along the arm and the corresponding displacement d&, orthogonal to
the arm.

relevant component of ds'is the one orthogonal to the elastic arm, denoted d3_ (see
fig. (2)). Let dt be a small displacement along the arm, then dt = (05/0t)dt and
from this ds_ is given by

ds. = di— [M] dt

where
L 05
Finally, ds_ can be expressed in the desired form
ds® = ngjdﬂ'(k)dﬂ'(j) ) (31)

kj



with the matrix elements

(3 - dF')(5 - &)
dt?

Irj = (Vr - V5) — (32)
that are tabulated in appendix A. As given by eq. (32) gi; still depends on the
parameter ¢ and varies as we move along the trajectory. We take this into account
by replacing gp; with its average

1 ta

(tz — tl) i1 gk] ’ (33)

ki —
where t; and t, defines the beginning and the end of the elastic arm, respectively.

The above procedure provides a robust and straightforward way of implementing
gradient descent. The number of undetermined updating parameters has also been
reduced to only one (¢€) which is the the global time-scale in the updating eq. (26).

This refined gradient descent method has been compared with the gradient descent
method used in ref. [12] for a number of events from the CERN DELPHI TPC
event generator. With a fixed iteration length this new gradient descent method
gave consistently lower final energies than the previous method.

5 Extensions of the Algorithm

Until now all tracks emerging from other points than the assumed vertex position have
been considered noise. This restriction is sometimes unrealistic from an experimental
point of view, when we have no knowledge about the number of vertices and their
positions. In this section we extend the formalism of the algorithm to include, (i)
secondary tracks coming from decaying particles and (ii) multiple vertex positions.
Using the ideas in ref. [14] we also show how to solve the problem of left-right
ambiguities in the data.

5.1 Multiple Vertex Positions

One often has events where there are more than one (primary) vertex position®.
Suppose there are K vertex positions 77 = (z%,7,27) (j = 1,..., K), then arm a is
parametrized by (kq, 64, 7a, 'F}f(a)), where k(a) = j if arm a belongs to vertex position

SMultiple events are expected for the next generation of accelerators (LHC,SS5C).

10



j- Each 77 is updated with contributions from all arms belonging to it, according to

A,’:’"O — Etjzwzl AF;5k(a),j

, (34)
7 S Bk(a 5

where §; ; is the Kronecker §-symbol and A7 = (Az3, Ay2, Az2) is calculated using
the update eq. (21) derived in section 4. (More explicit formulas can be found in
appendix B.)

5.2 Secondary Vertex Positions

We now focus on the problem of decaying particles. Particles can decay in many
different ways, but the most often occurring are the following three situations (see

fig. (3)):
e A neutral particle decays into a positive and a negative particle (fig. 3a).

e A positive charged particle decays into a neutral and a positive particle (fig.

3b).

e A negative charged particle decays into a neutral and a negative particle (fig.

3c).

a | b ¢

Figure 3: (a). Neutral — Positive + Negative. (b). Positive — Neutral + Positive. (c¢). Negative
— Neutral 4+ Negative.

The last two types are the easiest to handle, because the secondary tracks have
vertex positions that lie on an already visible track. This fact reduces the number
of parameters needed to describe the secondary track. If track a decays, somewhere

11



inside the detector, into the secondary track @ then (&,, éa, Ha, ta) completely describes
a through

1 ~ ~

z = —[sin(0, + Rat) — sinb,) + &7
Kq
1

y = —[—COS(H —|—;<;t)—|—cos€]—|—f]§ (35)
Kq

z = ;)"at + 2:1) )

with (27, 9;, 22) given by

1 -

5;2 = —[sin(@a ‘I‘ K/ata) - SiIl 011] —I_ mz
Kq
1 -~

gs = —[— COS(HQ -I_ K/ata) —I_ Cos 0(1] —I_ ys (36)
Kq

72 = yut, + 22

We locate all possible pairs (a, a) by looking at the quantity o, defined as
E’i I/ria]u—'ia

Ez’ I/':'a ‘
A small o, means that arm a has been well fitted to a track, while a large o, indicates
a possible secondary track. The parameters (R, 04,74, ts) can be updated using the

method derived in section 4. The corresponding derivatives dM;,/07(*) can be found
in appendix B.

Oy —

(37)

Tracks corresponding to the first type of decay must be parametrlzed by (k,0,7,7°),
since they are coming from an invisible track. The vertex position 7° = (& ",y 2°)
for each track pair is updated using eq. (34). As mentioned in section 2.2 V;, can
now be used to locate possible secondary tracks. If V;y &~ 1 for a set of signals close
to each other, then they may form possible secondary tracks.

5.3 Left-Right Ambiguities [14]

In some detectors there are ambiguities in the measurement of the position of a
particle. This means that a coordinate for a given signal may be double-valued - it
has a mirror signal, (z,y) — (z* or 27, y). This ambiguity problem can be solved [14]
in the same manner as noise signals are handled, but on different levels of resolution.
This is seen by rewriting the original energy function, eq. (1) as

2

N M N M
E({Sim 32—17 Si_zz}; 7?) = Z Z Sia (S;Mi-: + ‘sz’_aMi;) + A Z (Z Sia - 1) ) (38)

i=1la=1 =1 \a=1

12



where the new variables s and s;, are defined by

_ 1 if signal ¢* (¢7) is assigned to arm a

+ _

Sia (8ia) = { 0 otherwise ’ (39)
and with the corresponding distance measure M, (M;). A derivation analogous
to that of section 4.1 then gives new updating equations with the associated Potts
factors v}, and . For further details we refer to [14].

6 Initialization of the Algorithm

To ensure a fast convergence towards a high quality solution the elastic arms al-
gorithm must be initialized with approximate values for the parameters used to
parametrize the track. Since there are a lot of different types of tracks (straight
or curved tracks in 2- or 3-dimensions) in different experimental environments, a
universal procedure for initiating the algorithm is difficult to find. One initializa-
tion method may work for one experimental setup, but may be useless in another.
However, once an initialization procedure has been found, which may require some
engineering work, the elastic arms algorithm gives high quality solutions.

In this paper a general track is described by the parameters (k, 6,7, z° y°, 2°). To
initialize the algorithm one generally needs 6 initial values. In ref. [12] this was
simplified by the knowledge of (z°, y°, 2°) for the primary tracks. The initial values
of (k,8,7) could be found using Hough Transforms [17] (which essentially are variants
of “histogramming” or “binning” techniques in parameter space). When there is no
knowledge about the vertex position such a simple binning technique is harder to find
and will probably require specific knowledge about the experimental setup. However,
if the primary vertex position is known to be close to some origin, the simple Hough
transform used in ref. [12] can still be used.

7 Summary

We have extended the formalism of the elastic arms algorithm to include secondary
tracks coming from decaying particles and to handle events with more than one pri-
mary vertex position. With the explicit parametrization of the tracks it is possible
to refine the gradient descent method with a calculation of the natural metric. This
substantially reduces the number of parameters in the minimization procedure, giv-

13



ing an almost “black box” like algorithm. This method hence requires almost no
parameter-tuning by the user.

The introduction of zero-neurons with the corresponding probability Vo has given us
a better understanding of how the algorithm really works.

The elastic arms approach is easy to adapt to specific situations. If, for example,
measurement precisions vary with different pad-layers, then the formalism can be
generalized to allow for different i-dependent A’s. Even though we have used a con-
stant A it is possible to have a temperature dependent A.

It is showed that although the core algorithm is extremely robust and generalizable
to new situations, the initialization procedure has to be custom made for different
experimental configurations.

In this paper we have focused on specific generalizations of the algorithm and methods
for fast convergence. Due to lack of real data, these extensions has been tested on
the same data set as in ref. [12]. To test the new features of the algorithm in an
exploratory way other data sets should be used.

Particle physics tracking codes always end up “dirty” with ample of exceptions etc.
The elastic arms approach has the advantage that the code based on it starts out
from a clean base with global constraints built in. Nevertheless it is flexible to
host a variety of experimental setups. The only “engineering” needed concerns the
initialization. Furthermore the approach has the advantage of being intrinsically
parallel, facilitating design of custom made hardware for real-time execution.
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Appendix A

Explicit expressions for the matrix elements gj; corresponding to the parametrization, eq. (18):

9o = (3+272(2+ k??) — dcos(kt)(1 + 7?) + cos [2kt]
_ . Kty 2 X 1
gre = 2sin( 5 ) (K}"}’ t+ sm(nt)) B 1)
. vt
gn'y = (Sln(K}t) — K}t) m
t 1
grge = cos(0+ wt)— + (sin —sin(6 + xt)) — + (sin(kt) —
K K
. t 1 .
Grye = sin(f+ K}t); + (cos(6 + kt) — cos8) = + (sin(kt) —
. Y
Ggzo = (Sln(K}t) — K}t) m
_ ounitye 2 1
geg = 2sin( 5 ) (1 + 29° + cos(K,t)) (1577
_ . Kty vt
90’)’ - 2sln( 2 ) K}(]. _1_,}/2)
1 . Kkt _,cos(f+ kt
goze = (cos(f + kt) — cosb) ~ - 2 sm(?)zﬁ
. ) 1 . Kkt _,sin(f + kt
goyo = (sin(f+ xt) —sinb) — - 2 sm(?)zﬁ
Kt ¥
o = -2 O
9o sin(—- 2 ) ~(1+72)
t2
9yy = (1+72)
vt
g,yzc = — COS(G —|— K}t)m
. 7t
g,yyc = — s1n(9 —|— K}t)m
_ t
Gyze = (1 _1_,},2)
B cos(6 + t)?
gzﬂzo — (1 + ’yz)
doors = _sin(2 (8 + xt))
i 2(1+7?)
ggozo = — COS(Q —|— K}t)(l_:lifyz)
sin(6 + xt)?
gycyc = — 71 2
(14+172?)
. Y
gyczc = — s1n(9 —|— K}t)m
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Kt)
Kt) —7——+

cos(6 + kit

k(1 +7?)

51n(9 + Kt
K21+

— 4ry%t sin(nt))

)

)
?)

2k%(1 4+ v2)

1



Gzoz°

) (421)

Appendix B

The formulae below are valid only for the parametrization given by eq. (18). An elastic arm a is
given by (k,0,v,z°%y°, 2°) (the index a is suppressed below) and a signal 7 by (z;, ¥, 2;)-

Some abbreviations to shorten the formulas:

Az = z;—2° (B1)
Ay = -y’ (B2)
Az = z—2°. (B3)
With these we define
¢ = Azcosf+ Aysinf (B4)
d = %—I—AmsinH—AycosH (B5)
s = \/(K,Am +5in6)? 4 (kAy — cos §)? . (B6)

The distance measure M;, between signal ¢z and track a is then given by

1 2 2
Mia = ? (1 - 3) + (AZ - 7t) ’ (B7)
where ¢ is computed from
A 0 + Aysiné
kt = arctan ( T mcos‘ + Aysin ) (B8)
+ + Azsinf — Aycos 6
The derivatives of M;, with respect to the parameters («, 8,7, z° y°, 2°) are:
oM;, 2 dk 2y c
= -9 (1-=) - Az ) [ ¢ B9
Ok K,3( s)( s) K,( z 7)(n2(cz+d2) ) (B9)
OM; 2(s—1) 2y d
= —— (Az—Y) | =———7 -1 B10
a9 ks w (Az—7t) k2 (c? + d?) (B10)
OM;
L = 2t (Az— ot B11
= (85 =) (B11)
OM; 2(1-ys) ) 2y (Az — yt)
el — (kAz +sin ) — Em (kAy — cos ) (B12)
OM;, 2(1-ys) 2y (Az — 7t) )
9y° = — (kAy — cos6) + Em (kAz + sin 6) (B13)
OM;
2= —2(Az—nt) . B14
et (82— 71) (B14)
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A secondary track d is described by (&, é,ﬁ/,f) through the parametrization of eqs. (35,36). The
derivatives dM;, /0K, O M;,/ 00,0 M;, /0% are given above (egs. (B9 - B11)) with the substitution

(k,8,7,2%y° 2°) — (,8,7,2°,§° 3°) (B15)

and 8 M;, /0t is given by

oM;,

ot

_|_

where sn = sin(6 —

% (%—1) (Fﬂ (AiﬂCOS (9—1-&75) + Aysin (G—I—K,i)) —|—sn) + (B16)

2(Az+ 4t) (’y + ﬁ (Aycos (9 + K,i) — Azsin (9 + K,i) - %)) (B17)

6 — K,f) and cs = cos(é — 6 — kt)
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