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1 Motivation and ResultsAn important problem in the area of pattern recognition and computer vision isdetection of curves. In the context of high energy physics track �nding representssuch a problem. This is a combinatorial optimization problem; given a set of detectorsignals reconstruct particle trajectories subject to smoothness constraints. In mostcases, the parametric form of the tracks are known in advance - straight lines orhelices.Arti�cial Neural Networks (ANN) techniques, and variations thereof, have showngreat power in �nding approximate solutions to di�cult combinatorial optimizationproblems [1, 2]. The ANN technique has also been used for the track �nding problemwith encouraging results. In the pure neural approach [3, 4] one considers tracks as anumber of consecutive line segments. The idea is to assign a binary decision element(neuron) sij between two signals points i and j, which is one if i is connected to jand zero otherwise. An energy function in terms of sij is then constructed such thatsmooth tracks with no bifurcations correspond to minima. Initial explorations havegiven encouraging results with respect to solution quality for toy-sized problems withno noise [3, 4]. In ref. [5] realistic cuts on the number of degrees of the freedomwere made on real TPC data from the CERN ALEPH detector and the performanceturned out to be compatible withthe conventional method used in the ALEPH detector, both with respect to qualityand speed for large problem sizes. Another approach for the track �nding problemis the use of rotors [6]. A rotor ~si, which is a unit vector, is associated with eachsignal point i. In a local approach [7] each rotor interact with other rotors (withinsome neighborhood) and with line segments vectors ~rij. Again, an energy function isconstructed that lines up the rotors to form smooth tracks.The above methods are constructed to solve the combinatorial part of the track�nding problem, i.e. to assign signal points to tracks. In reality one also needs toknow the momenta corresponding to the tracks. In the neural approach one thenhas to augment the algorithm with some �tting procedure. In most track �ndingproblems the parametric form of the tracks are know in advance, but in the neuralapproach the network has no such prior knowledge. It would be advantageous tohave an algorithm that does both the assigning and the �tting simultaneously.One step in this direction has been taken in ref. [8] where the rotor approach [7] hasbeen modi�ed to take into account the parametric form of the tracks. This algorithmhas been tested on real data with encouraging results.This paper is based on the deformable templates [9], or the elastic nets [10], approach.1



The basic idea of this approach for track �nding was presented in ref. [11] and inref. [12] it was developed further with respect to theoretical understanding andexperimental applications. Another, closely related, approach was independentlypursued in ref. [13].In this paper the elastic arm approach is extended and generalized in di�erent direc-tions with the following main results:� The main task of the elastic arms algorithm is to minimize the energy functionEe� . The e�ciency of the algorithm depends on how fast it converges towardsthe global minimum of Ee� . In ref. [12] we used the standard gradient descentmethod but with individual updating parameters2. In this paper we modify thegradient descent method as to compensate for the di�erent metric imposed bythe parameters describing the track. As a result the convergence towards theminimum is faster and the number of updating parameters are reduced to one,it is basically a \black box" algorithm.� Furthermore, we show how the elastic arms algorithm also can be understoodmore intuitively in the standard mean �eld theory. In this treatment zero-neurons, with the corresponding Vi0 as the probability of i being a noise signal,appear in a very natural way. Thus, an event can be viewed as a set of realtracks with a given parametrization plus an extra \noise-track" consisting of allnoise signals.� Even though \real" data was used in the simulations of ref. [12] we assumedthat all tracks passed trough the a priori known origin. In reality there may bemore than one vertex position and also secondary vertex positions coming fromdecaying particles. We therefore extend the formalism to include multiple andsecondary vertex positions.� A complication that may occur in some detectors is the presence of left-rightambiguities in the data set. Following ref. [14] we describe how to handle thisproblem.The paper is organized as follows: In Section 2 we review the elastic arms algorithmplus a simpli�ed derivation using Potts mean �eld theory equations. Section 3 dealswith geometry and parametrization and in section 4 we modify the gradient descentmethod bymetric considerations. The necessary extensions of the algorithm to handlemultiple and secondary vertex positions are presented in Section 5. Section 6 containsa small discussion concerning the initialization of the algorithm and �nally a briefsummary can be found in section 7.2In the context of ANN these parameters are often called learning rates.2



2 The Elastic Arms Algorithm2.1 Review of the AlgorithmAn event is de�ned as a set ~x = f~x1; :::; ~xNg of N signal points. These ~xi's can beeither 2- or 3-dimensional. Each event also corresponds to a set of particle trajectories(tracks) and the task is to �nd these tracks, given ~x. For this purpose a set ~� =f~�1; :::; ~�Mg of M template tracks, or elastic arms, are introduced, where an arm a iscompletely described by its P parameters (�(1)a ; :::; �(P )a ).We state the track �nding problem as �nding minima to the energy functionE(fSiag; ~�) = NXi=1 MXa=1SiaMia(~x; ~�) + � NXi=1 MXa=1Sia � 1!2 ; (1)where Sia3 is a binary decision unit (neuron) de�ned asSia = ( 1 if signal i is assigned to arm a0 otherwise (2)Mia(~x; ~�) (or just Mia) is the minimal squared Eucledian distance between signalpoint i and arm a. Since each signal i can belong to only one track or no track atall, E must be minimized with the conditionXa Sia = 1 or 0 8 i : (3)Finally, the parameter � imposes a penalty if Pa Sia = 0, that is, if signal i is notassigned to any arm. In this way the parameter � governs the amount of noise thealgorithm allows for.In order to avoid local minima when minimizing E one often introduces noise4 intothe system. A commonly used procedure for doing this is simulated annealing [15]where the system is allowed to thermalize for a sequence of temperatures Tn > Tn�1 >::: > T0 according to the Boltzmann distributionP (fSiag; ~�) = 1Z e��E(fSiag;~�) ; (4)where � = 1=T and Z is the usual partition function.We proceed by calculating the marginal probability distributionPM (~�) = XfSiagP (fSiag; ~�) ; (5)3We use the notation Sia rather than Via as in ref. [12] for binary variables.4Not to be confused with noise signals 3



by summing out the neuronic degrees of freedom, Sia. Doing this (for details see ref.[12]) we end up with PM (~�) = 1Z e��Ee� (~�) ; (6)where we have introduced the e�ective energy Ee� asEe� (~�) = � 1� Xi log(e��� +Xa e��Mia) : (7)The most probable con�gurations according to eq. (6) corresponds to the minima ofEe� . Using a gradient descent method to minimize Ee� one gets an updating ruleaccording to ��(k)a = ��(k)a @Ee�@�(k)a = ��(k)a Xi V̂ia@Mia@�(k)a ; (8)where �(k)a is the updating parameter and the Potts factor V̂ia is given byV̂ia = e��Miae��� +PMb=1 e��Mib : (9)This algorithm has similarities with a collective self-organizing network [16]. Themain di�erence is the neighborhood function. In our approach every signal is takeninto account when �tting a certain arm, but they are weighted according to thePotts factor, eq. (9). In the low temperature limit the competitive winner-takes-all updating is retrieved. Another di�erence is the zero-neuron which enters thedenominator of the Potts factor (9), as e���. The parameter � governs the amountof noise points the algorithm allows for.Via can be interpreted as the probability for signal i to belong to arm a. In the limitT ! 0 (� !1) Via reduces to Sia, which means that Via can also be viewed as thethermal average of Sia; Via = < Sia >T .2.2 Mean Field Theory PictureEq. (8) can also be understood in a simple and more intuitive way using the Pottsmean �eld theory (MFT) equations [1]. Let us introduce N zero-neurons Si0 (i =1; :::; N), such that Mi0 = � 8 i. A suitable energy function E 0, equivalent to eq.(1), is given by E0(fSiag; ~�) = NXi=1 MXa=0SiaMia ; (10)4



which should be minimized together with the Potts conditionMXa=0Sia = 1 8 i : (11)This condition is, because of the N zero-neurons, completely equivalent to the pre-vious condition, eq. (3). Using gradient descent to minimize E 0, considering Sia as alogical constant, gives ��(k)a = ��(k)a Xi Sia@Mia@�(k)a : (12)Now, replace the Sia with its thermal average Via = < Sia >T . According to theMFT equations [1] Via is calculated asVia = eUiaPMb=0 eUia ; (13)where the local �eld Uia is given byUia = �@E 0@Via�= ��Mia : (14)Substitute this into eq. (13),Via = e��MiaPMb=0 e��Mib= e��Miae��� +PMb=1 e��Mib ; (15)which is the same as eq. (9).The N zero-neurons were introduced because of the presence of noise signals in thedata, i.e. signals which should not be assigned to any real track. It is thereforenatural to interpret Vi0 as the probability for signal i to be a noise signal, and Vi0 isgiven by Vi0 = e���e��� +PMb=1 e��Mib : (16)With this interpretation Vi0 can be used as a tool to identify non-�tted signals. IfVi0 � 1 after the annealing of the algorithm (T ! 0), then i is a possible noise signalor a signal belonging to a track not included in the formalism. This observation willbe used in section 5.2 to identify secondary tracks.It is also interesting to see how the di�erent Vi0's develop with decreasing temperature(iteration step). If we choose � to be the square of some typical distance representing5



the error in the initialization of the algorithm then, at high temperature, Vi0 > 0for most of the signals. As the temperature decreases \decisions" are made whethersignal i belongs to a track or not. This can be seen in �g. (1) where the di�erent Vi0'sare plotted against the number of iterations. The Vi0's goes to either 0, meaning thatsignal i is assigned to a track, or 1, corresponding to i being a noise signal. Decisionsare not made at a common temperature, instead the di�erent Vi0's converge at di�er-ent temperatures (iteration steps). We also see that, already at a high temperature,Vi0 � 1 for some signals, meaning that there is no initial arm close to these signals -they can form possible secondary tracks (see section 5.2).
Figure 1: Development of the Vi0's for a generated CERN DELPHI TPC event (371 signal points).3 Geometry and ParametrizationThe idea of the elastic arms algorithm is to match the observed events into a knownparametrized model. The type of model, of course, depends on what kind of trackswe want to describe. In the case of straight tracks in three dimensions a track a isde�ned by (�a; �a; xoa; yoa; zoa) through the obvious parametrizationx = t cos �a sin �a + xoay = t sin �a sin �a + yoa (17)z = t cos�a + zoa6



where t � 0. In this paper, however, we only consider tracks coming from detectorswith a constant magnetic �eld in the ẑ-direction, ~B = (0; 0; B). Furthermore, weneglect energy losses - all tracks are helices in the x̂ŷ-plane. In three dimensions, atrack is thus a spiral emerging from the vertex position (xo; yo; zo) with an emissionangle � in the x̂ŷ-plane, the curvature � (also referring to the x̂ŷ-plane) and �nallythe parameter 
 governing the extension in the longitudinal direction. In terms ofthese parameters (�; �; 
; xo; yo; zo) a point (x; y; z) on the track a is given byx = 1�a [sin (�a + �at)� sin �a] + xoay = 1�a [� cos (�a + �at) + cos �a] + yoa (18)z = 
at+ zoa ;where t 2 [0; �=j�aj]. Note that t has the dimension of length, making 
 a dimension-less scale parameter. The distance measure Mia is given by5Mia(~xi; ~�a) = M (xy)ia +M (z)ia= 1�2a �1�q[�a(xi � xoa) + sin �a]2 + [�a(yi � yoa)� cos �a]2�2 (19)+ (zi � zoa � 
at)2where t is computed fromt = 1�a arctan (xi � xoa) cos �a + (yi � yoa) sin �a1�a + (xi � xoa) sin �a � (yi � yoa) cos �a! : (20)The above parametrization does not include any position dependent �. Particles withvarying curvature have very low energy and usually one wants to ignore this kind ofparticles. If, however, one wants to detect low energy particles one would have to usea new parametrization for the arm to include energy losses.4 A Re�ned Gradient Descent Method4.1 Metrical ConsiderationsThe e�ciency of the algorithm depends upon how fast Ee� converges towards itsglobal minimum. A straight forward way to minimize Ee� is to use the gradientdescent method; minimize by taking small steps in the negative gradient direction5Mia is slightly di�erent from that of ref. [12] 7



(see eq. (8)). The gradient descent update equation can be written in a general wayas ��(k) = �� PXj=1 g�1kj @Ee�@�(j) ; (21)where � is a small number. In the standard gradient descent method, g is simplythe identity matrix. Since the parameters ~� = (�; �; 
; xo; yo; zo) are di�erent withrespect to dimensions and bounds, a natural extension is to have di�erent learningrates for di�erent parameters. This was done in ref. [12] where we used a diagonalmatrix g�1 according to g�1 = 1� 0B@ �(�) 0 00 �(�) 00 0 �(
) 1CA ; (22)where the update parameters (learning rates) (�(�); �(�); �(
)) were chosen on an in-tuitive and exploratory ground. We will now extend the choice of g to include \o�diagonal" elements. Each ��(k) will then be a mixture of all partial derivatives@Ee� =@�(j) (j = 1; :::; P ). One way of doing this is to use the second derivative H ofEe� and simply let g = H. To show this let us expand Ee� around a point ~�pEe� (~�) � Ee� (~�p) + rEe� j~�p � (~� � ~�p) + 12(~� � ~�p) �H � (~� � ~�p) ; (23)with the Hessian H given by [H]ij = @2Ee�@�(i)@�(j) �����~�p : (24)Let ~�m denote the point for which Ee� has a minimum, thenrEe� j~�m = 0 : (25)This condition, put into eq. (23), gives the desired updating equation�~� = ~�m � ~�p = �H�1 � rEe� ���~�p : (26)The calculation of H is in our case, unfortunately, very computationally demandingand would therefore not result in a faster algorithm. We will instead make anotherapproach and use matrix elements gij de�ned by the equationds2 =Xij gijd�(i)d�(j) ; (27)where ds and d� is the distance between two neighboring points in the usual spaceand the space de�ned by the coordinates ~� respectively (the right-hand member of8



the above equation is called the metric of the Riemannian space). If (�(1); :::; �(P ))are the usual Cartesian coordinates (x; y; z), then ds2 = dx2 + dy2 + dz2 and greduces to the identity matrix. In our formalism, however, we use the coordinates(�; �; 
; xo; yo; zo) rather than (x; y; z) to describe the elastic arms. The point-wisetransformation between the two coordinate systems is given by the parametrization,eq. (18), from which d~s can be calculated asd~s =Xk @~s@�(k)d�(k) = @~s@�d� + : : :+ @~s@zodzo : (28)Since Mia is a measure of the minimal distance between an arm a and a point i the
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Figure 2: (a). The measure Mia, which is the closest distance between arm a and point i. (b).The small displacement d~t along the arm and the corresponding displacement d~s? orthogonal tothe arm.relevant component of d~s is the one orthogonal to the elastic arm, denoted d~s? (see�g. (2)). Let dt be a small displacement along the arm, then d~t = (@~s=@t)dt andfrom this d~s? is given byd~s? = d~s � " (d~s � d~t )dt2 # d~t= Xk  ~vk � "~vk � d~tdt2 # d~t ! d�(k) ; (29)where ~vk � @~s@�(k) (30)Finally, d~s? can be expressed in the desired formds2? =Xkj gkjd�(k)d�(j) ; (31)9



with the matrix elements gkj = (~vk � ~vj)� (~vk � d~t )(~vj � d~t )dt2 (32)that are tabulated in appendix A. As given by eq. (32) gkj still depends on theparameter t and varies as we move along the trajectory. We take this into accountby replacing gkj with its averagegkj ! 1(t2 � t1) Z t2t1 gkjdt ; (33)where t1 and t2 de�nes the beginning and the end of the elastic arm, respectively.The above procedure provides a robust and straightforward way of implementinggradient descent. The number of undetermined updating parameters has also beenreduced to only one (�) which is the the global time-scale in the updating eq. (26).This re�ned gradient descent method has been compared with the gradient descentmethod used in ref. [12] for a number of events from the CERN DELPHI TPCevent generator. With a �xed iteration length this new gradient descent methodgave consistently lower �nal energies than the previous method.5 Extensions of the AlgorithmUntil now all tracks emerging from other points than the assumed vertex position havebeen considered noise. This restriction is sometimes unrealistic from an experimentalpoint of view, when we have no knowledge about the number of vertices and theirpositions. In this section we extend the formalism of the algorithm to include, (i)secondary tracks coming from decaying particles and (ii) multiple vertex positions.Using the ideas in ref. [14] we also show how to solve the problem of left-rightambiguities in the data.5.1 Multiple Vertex PositionsOne often has events where there are more than one (primary) vertex position6.Suppose there are K vertex positions ~r oj = (xoj ; yoj ; zoj ) (j = 1; :::;K), then arm a isparametrized by (�a; �a; 
a; ~r ok(a)), where k(a) = j if arm a belongs to vertex position6Multiple events are expected for the next generation of accelerators (LHC,SSC).10



j. Each ~r oj is updated with contributions from all arms belonging to it, according to�~r oj = PMa=1�~r oa �k(a);jPMa=1 �k(a);j ; (34)where �i;j is the Kronecker �-symbol and �~r oa = (�xoa;�yoa;�zoa) is calculated usingthe update eq. (21) derived in section 4. (More explicit formulas can be found inappendix B.)5.2 Secondary Vertex PositionsWe now focus on the problem of decaying particles. Particles can decay in manydi�erent ways, but the most often occurring are the following three situations (see�g. (3)):� A neutral particle decays into a positive and a negative particle (�g. 3a).� A positive charged particle decays into a neutral and a positive particle (�g.3b).� A negative charged particle decays into a neutral and a negative particle (�g.3c).
a b cFigure 3: (a). Neutral ! Positive + Negative. (b). Positive ! Neutral + Positive. (c). Negative! Neutral + Negative.The last two types are the easiest to handle, because the secondary tracks havevertex positions that lie on an already visible track. This fact reduces the numberof parameters needed to describe the secondary track. If track a decays, somewhere11



inside the detector, into the secondary track ~a then (~�a; ~�a; ~
a; ~ta) completely describes~a through x = 1~�a [sin (~�a + ~�at)� sin ~�a] + ~xoay = 1~�a [� cos (~�a + ~�at) + cos ~�a] + ~yoa (35)z = ~
at+ ~zoa ;with (~xoa; ~yoa; ~zoa) given by~xoa = 1�a [sin(�a + �a~ta) � sin �a] + xoa~yoa = 1�a [� cos(�a + �a~ta) + cos �a] + yoa (36)~zoa = 
a~ta + zoa :We locate all possible pairs (a; ~a) by looking at the quantity �a de�ned as�a = Pi ViaMiaPi Via : (37)A small �a means that arm a has been well �tted to a track, while a large �a indicatesa possible secondary track. The parameters (~�a; ~�a; ~
a; ~ta) can be updated using themethod derived in section 4. The corresponding derivatives @ ~Mia=@~�(k)a can be foundin appendix B.Tracks corresponding to the �rst type of decay must be parametrized by (�; �; 
;~r o),since they are coming from an invisible track. The vertex position ~r o = (xo; yo; zo)for each track pair is updated using eq. (34). As mentioned in section 2.2 Vi0 cannow be used to locate possible secondary tracks. If Vi0 � 1 for a set of signals closeto each other, then they may form possible secondary tracks.5.3 Left-Right Ambiguities [14]In some detectors there are ambiguities in the measurement of the position of aparticle. This means that a coordinate for a given signal may be double-valued - ithas a mirror signal, (x; y)! (x+ or x�; y). This ambiguity problem can be solved [14]in the same manner as noise signals are handled, but on di�erent levels of resolution.This is seen by rewriting the original energy function, eq. (1) asE(fSia; s+ia; s�iag; ~�) = NXi=1 MXa=1 Sia �s+iaM+ia + s�iaM�ia�+ � NXi=1  MXa=1Sia � 1!2 ; (38)12



where the new variables s+ia and s�ia are de�ned bys+ia (s�ia) = ( 1 if signal i+ (i�) is assigned to arm a0 otherwise ; (39)and with the corresponding distance measure M+ia (M�ia). A derivation analogousto that of section 4.1 then gives new updating equations with the associated Pottsfactors v̂+ia and v̂�ia. For further details we refer to [14].6 Initialization of the AlgorithmTo ensure a fast convergence towards a high quality solution the elastic arms al-gorithm must be initialized with approximate values for the parameters used toparametrize the track. Since there are a lot of di�erent types of tracks (straightor curved tracks in 2- or 3-dimensions) in di�erent experimental environments, auniversal procedure for initiating the algorithm is di�cult to �nd. One initializa-tion method may work for one experimental setup, but may be useless in another.However, once an initialization procedure has been found, which may require someengineering work, the elastic arms algorithm gives high quality solutions.In this paper a general track is described by the parameters (�; �; 
; xo; yo; zo). Toinitialize the algorithm one generally needs 6 initial values. In ref. [12] this wassimpli�ed by the knowledge of (xo; yo; zo) for the primary tracks. The initial valuesof (�; �; 
) could be found using Hough Transforms [17] (which essentially are variantsof \histogramming" or \binning" techniques in parameter space). When there is noknowledge about the vertex position such a simple binning technique is harder to �ndand will probably require speci�c knowledge about the experimental setup. However,if the primary vertex position is known to be close to some origin, the simple Houghtransform used in ref. [12] can still be used.7 SummaryWe have extended the formalism of the elastic arms algorithm to include secondarytracks coming from decaying particles and to handle events with more than one pri-mary vertex position. With the explicit parametrization of the tracks it is possibleto re�ne the gradient descent method with a calculation of the natural metric. Thissubstantially reduces the number of parameters in the minimization procedure, giv-13



ing an almost \black box" like algorithm. This method hence requires almost noparameter-tuning by the user.The introduction of zero-neurons with the corresponding probability Vi0 has given usa better understanding of how the algorithm really works.The elastic arms approach is easy to adapt to speci�c situations. If, for example,measurement precisions vary with di�erent pad-layers, then the formalism can begeneralized to allow for di�erent i-dependent �'s. Even though we have used a con-stant � it is possible to have a temperature dependent �.It is showed that although the core algorithm is extremely robust and generalizableto new situations, the initialization procedure has to be custom made for di�erentexperimental con�gurations.In this paper we have focused on speci�c generalizations of the algorithm and methodsfor fast convergence. Due to lack of real data, these extensions has been tested onthe same data set as in ref. [12]. To test the new features of the algorithm in anexploratory way other data sets should be used.Particle physics tracking codes always end up \dirty" with ample of exceptions etc.The elastic arms approach has the advantage that the code based on it starts outfrom a clean base with global constraints built in. Nevertheless it is 
exible tohost a variety of experimental setups. The only \engineering" needed concerns theinitialization. Furthermore the approach has the advantage of being intrinsicallyparallel, facilitating design of custom made hardware for real-time execution.AcknowledgementsI would like to thank Richard Blankenbecler and Carsten Peterson for valuable dis-cussions and Bo S�oderberg in particular for the idea on how to use the natural metric.I would also like to thank O. B�arring for providing me with the DELPHI TPC sim-ulation data.
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Appendix AExplicit expressions for the matrix elements gkj corresponding to the parametrization, eq. (18):g�� = �3 + 2
2 �2 + �2t2�� 4 cos(�t)(1 + 
2) + cos [2�t]� 4�
2t sin(�t)� 12�4(1 + 
2)(A1)g�� = 2 sin(�t2 )2 ��
2t + sin(�t)� 1�3(1 + 
2) (A2)g�
 = (sin(�t)� �t) 
t�2(1 + 
2) (A3)g�xo = cos(� + �t) t� + (sin � � sin(� + �t)) 1�2 + (sin(�t)� �t) cos(� + �t)�2(1 + 
2) (A4)g�yo = sin(� + �t) t� + (cos(� + �t)� cos �) 1�2 + (sin(�t) � �t) sin(� + �t)�2(1 + 
2) (A5)g�zo = (sin(�t)� �t) 
�2(1 + 
2) (A6)g�� = 2 sin(�t2 )2 �1 + 2
2 + cos(�t)� 1�2(1 + 
2) (A7)g�
 = �2 sin(�t2 )2 
t�(1 + 
2) (A8)g�xo = (cos(� + �t)� cos �) 1� � 2 sin(�t2 )2 cos(� + �t)�(1 + 
2) (A9)g�yo = (sin(� + �t) � sin �) 1� � 2 sin(�t2 )2 sin(� + �t)�(1 + 
2) (A10)g�zo = �2 sin(�t2 )2 
�(1 + 
2) (A11)g

 = t2(1 + 
2) (A12)g
xo = � cos(� + �t) 
t(1 + 
2) (A13)g
yo = � sin(� + �t) 
t(1 + 
2) (A14)g
zo = t(1 + 
2) (A15)gxoxo = 1� cos(� + �t)2(1 + 
2) (A16)gxoyo = � sin(2 (� + �t))2(1 + 
2) (A17)gxozo = � cos(� + �t) 
(1 + 
2) (A18)gyoyo = 1� sin(� + �t)2(1 + 
2) (A19)gyozo = � sin(� + �t) 
(1 + 
2) (A20)15



gzozo = 1(1 + 
2) (A21)Appendix BThe formulae below are valid only for the parametrization given by eq. (18). An elastic arm a isgiven by (�; �; 
; xo; yo; zo) (the index a is suppressed below) and a signal i by (xi; yi; zi).Some abbreviations to shorten the formulas:�x � xi � xo (B1)�y � yi � yo (B2)�z � zi � zo : (B3)With these we de�ne c � �x cos � +�y sin � (B4)d � 1� +�x sin � ��y cos � (B5)s � q(��x+ sin �)2 + (��y � cos �)2 : (B6)The distance measure Mia between signal i and track a is then given byMia = 1�2 (1� s)2 + (�z � 
t)2 ; (B7)where t is computed from �t = arctan� �x cos � +�y sin �1� +�x sin � ��y cos �� : (B8)The derivatives of Mia with respect to the parameters (�; �; 
; xo; yo; zo) are:@Mia@� = � 2�3 (1� s)�1� d�s �� 2
� (�z � 
t)� c�2 (c2 + d2) � t� (B9)@Mia@� = 2 (s � 1)�s c� 2
� (�z � 
t)� d�2 (c2 + d2) � 1� (B10)@Mia@
 = �2t (�z � 
t) (B11)@Mia@xo = 2 (1� s)�s (��x+ sin �)� 2
�2 (�z � 
t)(c2 + d2) (��y � cos �) (B12)@Mia@yo = 2 (1� s)�s (��y � cos �) + 2
�2 (�z � 
t)(c2 + d2) (��x+ sin �) (B13)@Mia@zo = �2 (�z � 
t) : (B14)16



A secondary track ~a is described by (~�; ~�; ~
; ~t) through the parametrization of eqs. (35,36). Thederivatives @Mia=@~�; @Mia=@~�; @Mia=@~
 are given above (eqs. (B9 - B11)) with the substitution(�; �; 
; xo; yo; zo)! (~�; ~�; ~
; ~xo; ~yo; ~zo) ; (B15)and @Mia=@~t is given by@Mia@~t = 2~� �1s � 1��~� ��x cos �� + �~t� +�y sin �� + �~t��+ sn� + (B16)+ 2 (�z + ~
t)�
 + ~
~� (c2 + d2) ��y cos �� + �~t���x sin �� + �~t�� cs~� �� (B17)where sn � sin(~� � � � �~t) and cs � cos(~� � � � �~t).
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